
June 22th, 2023
3rd IFERC workshop on the usage of GPU based system
for fusion applications

Kenji IMADERA Shuhei GENKO Shuhei OKUDA
Graduate School of Energy Science, Kyoto University, Japan

Contents
1. Introduction (6/21)
2. Utilization of Multi-GPU (3/21)
3. Direct GPU-GPU data transfer (3/21)
4. Installation of cuFFT (4/21)
5. Nonlinear Simulation of JT-60SA Plasma (3/21)
6. Summary (2/21)

GPU Acceleration of
5D Global Gyrokineitc Code GKNET

by OpenACC Directives

Acknowledgement
Masatoshi YAGI, Naoaki MIYATO, Haruki SETO (QST), Akira NARUSE (NVIDIA Japan)

Global/Local Gyrokinetics
Local 𝛿𝛿f approach Global full-f approach

𝑅𝑅/𝐿𝐿𝑇𝑇 ≠ 0
𝑇𝑇 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑇𝑇

𝑟𝑟

𝑅𝑅/𝐿𝐿𝑇𝑇 ≠ 0
𝑇𝑇 ≠ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

heat
source

𝑇𝑇

heat/particle
sink

𝑟𝑟

Flux-driven

Very powerful tool to estimate turbulent
transport process

Computationally efficient
-> multi(ion/electron)-scale simulation

Global effects can be treated precisely

Mean 𝐸𝐸𝑟𝑟 is self-consistently determined
-> Internal Transport Barrier (ITB)

Both neoclassical & turbulent transport
process can be traced

Gradient-driven

𝜕𝜕𝑡𝑡𝑓𝑓𝑒𝑒𝑒𝑒 − 𝐻𝐻,𝑓𝑓𝑒𝑒𝑒𝑒 = 𝐶𝐶 𝑓𝑓𝑒𝑒𝑒𝑒 + 𝑆𝑆

𝜕𝜕𝑡𝑡𝛿𝛿𝑓𝑓 − 𝐻𝐻, 𝛿𝛿𝑓𝑓 − 𝛿𝛿𝐻𝐻,𝑓𝑓𝑒𝑒𝑒𝑒 − 𝛿𝛿𝐻𝐻, 𝛿𝛿𝑓𝑓 = 𝐶𝐶 𝛿𝛿𝑓𝑓

𝜕𝜕𝑡𝑡𝑓𝑓𝑒𝑒𝑒𝑒 − 𝐻𝐻,𝑓𝑓𝑒𝑒𝑒𝑒 = 𝐶𝐶 𝑓𝑓𝑒𝑒𝑒𝑒 + 𝑆𝑆

𝜕𝜕𝑡𝑡𝛿𝛿𝑓𝑓 − 𝐻𝐻, 𝛿𝛿𝑓𝑓 − 𝛿𝛿𝐻𝐻,𝑓𝑓𝑒𝑒𝑒𝑒 − 𝛿𝛿𝐻𝐻, 𝛿𝛿𝑓𝑓 = 𝐶𝐶 𝛿𝛿𝑓𝑓

1/21

Typical Flux-driven Simulation

Heating

Center edge

Te
m

pe
ra

tu
re

Radius

Radius

Animation of turbulence structure Animation of plasma temperature

 In flux-driven simulations, the external heat source is introduced, which
sustains the background temperature profile. As the result, we can treat non-
decaying turbulence over the confinement time.

 By means of such flux-driven simulations, we try to understand the
relationship between background profile evolution and turbulence dynamics.

Turbulent
transport

2/21

Global Gyrokinetic Code GKNET

5D phase-space Boltzmann equation
for distribution functions
𝜕𝜕𝑓𝑓𝑠𝑠
𝜕𝜕𝑐𝑐

+ �
𝑖𝑖=1

5
𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑐𝑐

𝜕𝜕𝑓𝑓𝑠𝑠
𝜕𝜕𝑥𝑥

= 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Convection
In 5D space

Time derivatives
of distribution

function
for species 𝑐𝑐

3D real-space Poisson equation
for electrostatic potential

−∇2𝜙𝜙 = �
𝑠𝑠

𝑒𝑒𝑠𝑠 �𝑓𝑓𝑠𝑠𝑑𝑑 𝒗𝒗

Total charge
density

Electrostatic potential
(related to convection

in the Boltzmann
equation)

 For performing flux-driven simulations in 5D phase-space, GKNET (GyroKinetic
Numerical Experiment for Tokamak) has been developed and MPI-parallelized.

𝑦𝑦 = −𝜁𝜁 +
𝑧𝑧 = 𝜃𝜃

𝑥𝑥 = 𝜌𝜌𝑎𝑎
𝑎𝑎

𝑎𝑎

 To reduce the number of the
simulation grid and the resultant
calculation time, we recently
introduced field aligned coordinate.
[Okuda, PFR-2023]

�
0

𝜃𝜃
𝜈𝜈 𝜌𝜌, 𝜃𝜃′ 𝑑𝑑𝜃𝜃𝑑

𝒆𝒆𝑧𝑧 𝒆𝒆𝑦𝑦

𝒆𝒆𝑥𝑥
3/21

𝜕𝜕𝑓𝑓
𝜕𝜕𝑐𝑐 = −𝑣𝑣𝑥𝑥

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥 − 𝑣𝑣𝑦𝑦

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥 = −

1
2 𝑣𝑣𝑥𝑥

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥 +

𝜕𝜕 𝑣𝑣𝑥𝑥𝑓𝑓
𝜕𝜕𝑥𝑥 −

1
2 𝑣𝑣𝑦𝑦

𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦 +

𝜕𝜕(𝑣𝑣𝑦𝑦𝑓𝑓)
𝜕𝜕𝑦𝑦 (∵

𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝑥𝑥 +

𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝑦𝑦 = 0)

Global Gyrokinetic Code GKNET -Vlasov Solver-

Vlasov solver
 Spatial discretization: 4th-order Morinishi scheme
 Time integration: 4th-order explicit Runge-Kutta scheme

[Idomura, JCP-2007]

Ex. 2D case of Morinishi scheme

𝑑𝑑𝑣𝑣∥
𝑑𝑑𝑐𝑐

≡ 𝑣𝑣∥,𝐻𝐻 = −
𝐁𝐁∥∗(𝐑𝐑, 𝑣𝑣∥)
𝑚𝑚𝑖𝑖𝐵𝐵∥∗(𝐑𝐑, 𝑣𝑣∥)

� 𝑒𝑒𝛁𝛁 𝜙𝜙(𝐑𝐑) 𝛼𝛼 + 𝜇𝜇𝛁𝛁𝐵𝐵(𝐑𝐑)

𝑑𝑑𝐑𝐑
𝑑𝑑𝑐𝑐

≡ 𝐑𝐑,𝐻𝐻 = 𝑣𝑣∥𝐛𝐛(𝐑𝐑) +
𝑐𝑐

𝑒𝑒𝐵𝐵∥∗(𝐑𝐑, 𝑣𝑣∥)
𝐛𝐛(𝐑𝐑) × 𝑒𝑒𝛁𝛁 𝜙𝜙(𝐑𝐑) 𝛼𝛼 + 𝑚𝑚𝑖𝑖𝑣𝑣∥2𝐛𝐛(𝐑𝐑) � 𝜵𝜵𝐛𝐛(𝐑𝐑) + 𝜇𝜇𝛁𝛁𝐵𝐵(𝐑𝐑)

𝜕𝜕𝑓𝑓
𝜕𝜕𝑐𝑐

+
𝑑𝑑𝐑𝐑
𝑑𝑑𝑐𝑐

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝐑𝐑

+
𝑑𝑑𝑣𝑣∥
𝑑𝑑𝑐𝑐

𝜕𝜕𝑓𝑓
𝜕𝜕𝑣𝑣∥

= 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝜕𝜕𝑓𝑓
𝜕𝜕𝑐𝑐 𝑖𝑖,𝑗𝑗

𝑛𝑛

= −
1
2 𝑣𝑣𝑥𝑥,𝑖𝑖,𝑗𝑗

𝑛𝑛 4
3
𝑓𝑓𝑖𝑖+1,𝑗𝑗
𝑛𝑛 − 𝑓𝑓𝑖𝑖−1,𝑗𝑗

𝑛𝑛

2Δ𝑥𝑥 −
1
3
𝑓𝑓𝑖𝑖+2,𝑗𝑗
𝑛𝑛 − 𝑓𝑓𝑖𝑖−2,𝑗𝑗

𝑛𝑛

4Δ𝑥𝑥 +
4
3
𝑣𝑣𝑥𝑥,𝑖𝑖+1,𝑗𝑗
𝑛𝑛 𝑓𝑓𝑖𝑖+1,𝑗𝑗

𝑛𝑛 − 𝑣𝑣𝑥𝑥,𝑖𝑖−1,𝑗𝑗
𝑛𝑛 𝑓𝑓𝑖𝑖−1,𝑗𝑗

𝑛𝑛

2Δ𝑥𝑥 −
1
3
𝑣𝑣𝑥𝑥,𝑖𝑖+2,𝑗𝑗
𝑛𝑛 𝑓𝑓𝑖𝑖+2,𝑗𝑗

𝑛𝑛 − 𝑣𝑣𝑥𝑥,𝑖𝑖−2,𝑗𝑗
𝑛𝑛 𝑓𝑓𝑖𝑖−2,𝑗𝑗

𝑛𝑛

4Δ𝑥𝑥

Discretize each derivative by using 4th-order central FDM

−
1
2 𝑣𝑣𝑥𝑥,𝑖𝑖,𝑗𝑗

𝑛𝑛 4
3
𝑓𝑓𝑖𝑖,𝑗𝑗+1𝑛𝑛 − 𝑓𝑓𝑖𝑖,𝑗𝑗−1𝑛𝑛

2Δ𝑦𝑦 −
1
3
𝑓𝑓𝑖𝑖,𝑗𝑗+2𝑛𝑛 − 𝑓𝑓𝑖𝑖,𝑗𝑗−2𝑛𝑛

4Δ𝑦𝑦 +
4
3
𝑣𝑣𝑥𝑥,𝑖𝑖,𝑗𝑗+1
𝑛𝑛 𝑓𝑓𝑖𝑖,𝑗𝑗+1𝑛𝑛 − 𝑣𝑣𝑥𝑥,𝑖𝑖,𝑗𝑗−1

𝑛𝑛 𝑓𝑓𝑖𝑖,𝑗𝑗−1𝑛𝑛

2Δ𝑦𝑦 −
1
3
𝑣𝑣𝑥𝑥,𝑖𝑖,𝑗𝑗+2
𝑛𝑛 𝑓𝑓𝑖𝑖,𝑗𝑗+2𝑛𝑛 − 𝑣𝑣𝑥𝑥,𝑖𝑖,𝑗𝑗−2

𝑛𝑛 𝑓𝑓𝑖𝑖,𝑗𝑗−2𝑛𝑛

4Δ𝑦𝑦

5D phase-space Gyrokinetic Boltzmann equation

𝑹𝑹 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧)

4/21

∇ ⋅
𝑚𝑚𝑖𝑖𝑐𝑐 𝑥𝑥
𝐵𝐵 𝑥𝑥, 𝑧𝑧 2 ∇⊥𝜙𝜙 −

𝑒𝑒2𝑐𝑐
𝑇𝑇𝑒𝑒

𝜙𝜙 − 𝜙𝜙 𝑓𝑓 = −2𝜋𝜋𝑒𝑒� 𝛿𝛿𝑓𝑓𝑖𝑖
𝐵𝐵∥∗

𝑚𝑚𝑖𝑖
𝑑𝑑𝑣𝑣∥𝑑𝑑𝜇𝜇

𝐿𝐿0 + 𝐿𝐿1 𝜙𝜙 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝑐𝑐 𝑥𝑥,𝑦𝑦, 𝑧𝑧

𝐿𝐿0 = 𝑐𝑐1 𝑥𝑥, 𝑧𝑧
𝜕𝜕2

𝜕𝜕𝑥𝑥2 + 𝑐𝑐2 𝑥𝑥, 𝑧𝑧
𝜕𝜕2

𝜕𝜕𝑦𝑦2 + 𝑐𝑐3 𝑥𝑥, 𝑧𝑧
𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕
𝜕𝜕𝑦𝑦

+ 𝑐𝑐4 𝑥𝑥, 𝑧𝑧
𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝑐𝑐5 𝑥𝑥, 𝑧𝑧
𝜕𝜕
𝜕𝜕𝑦𝑦

+ 𝑐𝑐6 𝑥𝑥

𝐿𝐿1 = 𝑙𝑙1 𝑥𝑥, 𝑧𝑧
𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕
𝜕𝜕𝑧𝑧 + 𝑙𝑙2 𝑥𝑥, 𝑧𝑧

𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕
𝜕𝜕𝑧𝑧 + 𝑙𝑙3 𝑥𝑥, 𝑧𝑧

𝜕𝜕2

𝜕𝜕𝑧𝑧2 + 𝑙𝑙4(𝑥𝑥, 𝑧𝑧)
𝜕𝜕
𝜕𝜕𝑧𝑧

𝜕𝜕𝜙𝜙
𝜕𝜕𝑧𝑧

Poisson solver
Step-1 : FFT along the 𝑦𝑦 direction ← because all the coefficients are independent to 𝑦𝑦

Step-2 : Set the initial guess �𝜙𝜙𝑛𝑛
0 𝑥𝑥, 𝑧𝑧 , and then solve �𝐿𝐿0 �𝜙𝜙𝑛𝑛

(1) 𝑥𝑥, 𝑧𝑧 + �𝐿𝐿1,𝐷𝐷 �𝜙𝜙𝑛𝑛
1 𝑥𝑥, 𝑧𝑧 =

�̂�𝑐𝑛𝑛 𝑥𝑥, 𝑧𝑧 − �𝐿𝐿1,𝑁𝑁𝐷𝐷 �𝜙𝜙𝑛𝑛
0 𝑥𝑥, 𝑧𝑧 by using the 1D matrix solver

Step-3 : By repeating Step-2 (=Jacobi method), get the conveged solution �𝜙𝜙𝑛𝑛

← because is higher order, a few iterations are enough for the convergence

Global Gyrokinetic Code GKNET -Poisson Solver-

3D real-space Gyrokinetic quasi-neutrality condition

5/21

A) Multi-GPU
 By utilizing multi-GPU on each node, we

accelerated 5D/4D loops in the Vlasov/Poisson
solvers.

B) Direct GPU-GPU data transfer
 Instead of CPU-GPU data transfer, direct GPU-

GPU data transfer is introduced for 5D/4D
boundary data exchange in the Vlasov/Poisson
solvers.

C) Batched CuFFT
 For boundary data in the Vlasov/Poisson solvers

& for solving the quasi-neutrality condition in
the Poisson solver, the batched cuFFT is installed.

Targets of This Talk
 We are aiming at the GPU acceleration of GKNET by using OpenACC directives on

MARCONI 100 (CINECA, Italy).

Initial setting

Vlasov solver
1. 5D loop
2. 5D Boundary data communication
3. 1D FFT for boundary data

𝑓𝑓𝑛𝑛,𝜙𝜙𝑛𝑛 → 𝑓𝑓𝑛𝑛+1

Poisson solver
1. 1D FFT for Poisson solver
2. 4D loop
3. 4D Boundary data communication
4. 1D FFT for boundary data

𝑓𝑓𝑛𝑛+1 → 𝜙𝜙𝑛𝑛+1

Output
6/21

def = acc_get_num_devices (acc_devise_nvidia)
gpuid = mod(rank, def)
call acc_set_device_num(gpuid,
acc_device_defaut)

!$acc data copy(…) &
!$acc& copyin(...) &
!$acc& create(…)

!$acc wait
!$acc kernels
!$acc loop collapse(4) gang vector
DO x_i = 3, N_x_p+2

DO y_i = 3, N_y_p+2
DO z_i = 3, N_z_p+2

DO v_i = 3, N_v+2
DO u_i = 3, N_u+3

Heavy calculation

END DO
END DO

END DO
END DO
!$acc end kernels

 Each CPU is explicitly linked to the GPU in
same node.

 The OpenACC data directives (copy,
copyin, etc.) are utilized for CPU-GPU data
transfer.

 The 4D/5D loops are collapsed to one loop
and then distributed to each GPU.

Utilization of Multi-GPU - 1

CPU

GPU

Image of GPU allocation to CPUsTypical 5D loop in Vlasov solver

7/21

マルチGPUの実装結果-Vlasov

 By increasing the number of GPUs on each nodes, the calculation time is
reduced, which tendency is enhanced in the larger problem size case.

 But the speed-up rate is still low because the FFT part is not GPU parallelized
yet.

Mesh number: 64 × 64 × 144 × 32 × 8

𝟏𝟏
𝟒𝟒.𝟑𝟑

𝟏𝟏
𝟏𝟏𝟏𝟏

Utilization of Multi-GPU - 2

Mesh number: 128 × 128 × 144 × 64 × 8

Calculation

Communi
cation

Calculation

Communi
cation

Elapsed
Time [s]

Elapsed
Time [s]

Benchmark test of Vlasov solver

16 node16 node

8/21

マルチGPUの実装結果-NEUTRAL

𝟏𝟏
𝟐𝟐.𝟖𝟖

𝟏𝟏
𝟐𝟐.𝟐𝟐

マルチGPUの実装結果-VlasovUtilization of Multi-GPU - 3

Mesh number: 64 × 64 × 144 × 32 × 8 Mesh number: 128 × 128 × 144 × 64 × 8

Benchmark test of Poisson solver

 Same tendency can be observed but the FFT part is not GPU parallelized yet.

Calculation

Communi
cation

Calculation

Communi
cation

Elapsed
Time [s]

Elapsed
Time [s]

9/21

CPU-GPU間の通信方法の改良

Transfer from GPU to CPU

Transfer from CPU to GPU

 We transferred the boundary data from GPU to CPU before the MPI data
communications (Left case).

 To improve this part, direst GPU-GPU data transfer is utilized by using
“acc_host_data_use_device” (Right case).

Direct GPU-GPU Data Transfer - 1

10/21

GPUダイレクト通信の実装結果-Vlasov

CPU-GPU communication

 Since the CPU-GPU data transfer is skipped by the direct GPU-GPU one, the
communication time is reduced.

16CPU 16CPU+1GPU 16CPU+4GPU
計算時間 1089 104 76.8
通信時間 15.1 32.6 24.2

16CPU 16CPU+1GPU 16CPU+4GPU
計算時間 1089 104 76.8
通信時間 15.1 11.3 9.83

Direct GPU-GPU Data Transfer - 2

Direct GPU-GPU communication

Calculation

Communication

Calculation

Communication

Elapsed
Time [s]

Elapsed
Time [s]

Benchmark test of Vlasov solver

11/21

GPUダイレクト通信の実装結果-NEUTRAL

16CPU 16CPU+2GPU 16CPU+4GPU
計算時間 925 498 420
通信時間 7.29 111 75.9

16CPU 16CPU+2GPU 16CPU+4GPU
計算時間 925 498 420
通信時間 7.29 3.48 2.40

GPUダイレクト通信の実装結果-VlasovCPU-GPU間の通信方法の改良

CPU-GPU communication Direct GPU-GPU communication

Calculation

Communication

Calculation

Communication

Benchmark test of Poisson solver

Elapsed
Time [s]

Elapsed
Time [s]

 The direct GPU-GPU data transfer has not been successfully installed, but the
data communication time of Poisson solver is originally small.

Direct GPU-GPU Data Transfer - 3

12/21

FFTライブラリの最適化

■：cuFFT ■：FFTW

Installation of cuFFT - 1

 In the original GKNET, FFTW is used for FFT calculation on CPUs. To accelerate
this part, cuFFT is installed.

 As is shown by the simple 3D FFT test below, the efficiency of cuFFT is
confirmed only in the large-size problem.

Mesh number

 But, taking into account for
the CPU-GPU data transfer for
using FFTW, cuFFT is expected
to be faster than FFTW even in
the small-size problem.

Elapsed
Time [s]

13/21

まとめ

…

ierr1 = cufftPlanMany(plan, 1, …, CUFFT_Z2Z, Nbatch)
if (ierr1 /= CUFFT_SUCCESS) then
print *, 'cufftPlanMany: error', ierr1

end if

…

!$acc host_data use_device(in, out)
ierr1 = cufftExecZ2Z(plan, in, out, CUFFT_FORWARD)
if (ierr1 /= CUFFT_SUCCESS) then
print *, 'cufftExecC2C: error', ierr1
end if
!$acc end host_data

…

ierr1 = cufftDestroy(plan)
if (ierr1 /= CUFFT_SUCCESS) then

print *, 'cufftDestroy: error', ierr1
end if

Installation of cuFFT - 2

Call of cuFFT

 Since we need 1D FFT for 3D data as
follows, batched cuFFT is utilized.

𝑓𝑓 𝑥𝑥, 𝑘𝑘𝑦𝑦 , 𝑧𝑧 = �
𝑖𝑖

𝑓𝑓 𝑥𝑥,𝑦𝑦𝑖𝑖 , 𝑧𝑧 exp 𝑖𝑖𝑘𝑘𝑦𝑦𝑦𝑦𝑖𝑖

 In this case, Nbatch=N_x*N_z is set.

 In addition, direct GPU-GPU data
transfer is also utilized.

14/21

FFTW

 The problem size in 3D real space is relatively low, but the calculation time is
largely reduced by the installation of cuFFT because the CPU-GPU data
transfer is skipped.

16CPU 16CPU+1GPU 16CPU+4GPU
計算時間 1089 20.6 11.0
通信時間 15.1 11.3 9.83

16CPU 16CPU+1GPU 16CPU+4GPU
計算時間 1089 104 76.8
通信時間 15.1 11.3 9.83

𝟏𝟏
𝟏𝟏𝟒𝟒

𝟏𝟏
𝟗𝟗𝟗𝟗

Installation of cuFFT - 3

cuFFT
Benchmark test of Vlasov solver

Calculation

Communication

Calculation

Communication

Elapsed
Time [s]

Elapsed
Time [s]

15/21

16CPU 16CPU+2GPU 16CPU+4GPU
計算時間 925 142 113
通信時間 7.29 3.48 2.40

16CPU 16CPU+2GPU 16CPU+4GPU
計算時間 925 498 420
通信時間 7.29 3.48 2.40

𝟏𝟏
𝟐𝟐.𝟐𝟐 𝟏𝟏

𝟖𝟖.𝟐𝟐

Installation of cuFFT - 4

Calculation

Communication

Calculation

Communication

FFTW cuFFT
Benchmark test of Poisson solver

Elapsed
Time [s]

Elapsed
Time [s]

 Same tendency can be observed but the speed-up rate is still low. This is
considered to originate from the 1D matrix solver for the Jacobi method.

16/21

Nonlinear Simulation of JT-60SA Plasma - 1

𝑞𝑞 = 2.33 𝑚𝑚 = 233

𝑐𝑐 = 100

𝛾𝛾
>

0,
𝜔𝜔

/4
<

0
[𝑣𝑣
𝑡𝑡𝑖𝑖

/𝑅𝑅
0]

𝑘𝑘𝜃𝜃𝜌𝜌𝑡𝑡𝑖𝑖

Dispersion relation

The poloidal harmonics of 𝜙𝜙𝑛𝑛=100
He

ig
ht

 [m
]

Major radius [m]

𝜙𝜙𝑛𝑛=100 in a linear phase

 The system size is 𝑎𝑎0/𝜌𝜌𝑡𝑡𝑖𝑖0 = 294 and the
applied mesh number in real space is (720, 256,
32), respectively.

 Very high poloidal mode number instabilities,
such as 𝑚𝑚,𝑐𝑐 = (233, 100), have been resolved.

17/21

Nonlinear Simulation of JT-60SA Plasma - 2

Major radius [m]

H
ei

gh
t [

m
]

Time development of the amplitude of the
electrostatic potential

𝜙𝜙(𝜁𝜁 = 0) after the nonlinear
saturation

 The zonal flow has been generated at the position corresponding to the linear
instabilities.

18/21

Nonlinear Simulation of JT-60SA Plasma - 3

 Consider the number of meshes required to resolve the mode 𝑚𝑚res = 160 ×
2.3 ≈ 370 resonating with 𝑐𝑐 = 160, which is unstable in this case.

 Assuming that 8 times as many meshes as the mode number are required, we
need 𝑁𝑁𝜃𝜃 = 370 × 8 ≈ 30 in the flux-surface coordinate system (𝜌𝜌,𝜃𝜃, 𝜁𝜁).

 On the other hand, in the field aligned coordinate system (𝑥𝑥, 𝑦𝑦, 𝑧𝑧), 𝑁𝑁𝑧𝑧 = 32 is
enough as this case.

 By utilizing the field aligned coordinate system , the required meshes are
reduced to 3000 ÷ 32 ≈ 1/94.

19/21

まとめ
Summary - 1

 We have accelerated global gyrokinetic code by using OpenACC directives.

 Especially we have tried (A)the utilization of multi-GPU, (B) the direct GPU-
GPU data transfer, (C) the installation of cuFFT.

 We have achieved 83 times speed-up for Vlasov solver and 9.1 times speed-up
for Poisson solver.

 As the result, the total speed-up rate was 13.

𝟏𝟏
𝟏𝟏𝟑𝟑

Summary-1

Multi-GPU

Multi-GPU+
Direct transfer

Multi-GPU+
Direct transfer

+ cuFFT

Calc. Calc.Comm. Comm. Total

20/21

まとめ
Summary - 2

 We have also implemented a field-aligned coordinate system to GKNET.

 Realistic tokamak geometries, including up-down asymmetric equilibria, have
been also implemented.

 The result shows that the linear ITG instability with high poloidal modes and
resultant zonal flow generation are properly traced. In this case, it is estimated
that the number of computational grids can be reduced to 1/94 compared to
that of the flux surface coordinate system.

Summary-2

21/21

Future plans
 The development of GKNET will be extended to address

tokamak edge turbulence. Currently, an interface code is
being developed in the SOL/divertor region.

 In addition, we will resolve some issues for GPU
acceleration (Matrix solver, GPU-GPU direct transfer, etc.)

	スライド番号 1
	スライド番号 2
	スライド番号 3
	スライド番号 4
	スライド番号 5
	スライド番号 6
	スライド番号 7
	スライド番号 8
	マルチGPUの実装結果-Vlasov
	マルチGPUの実装結果-NEUTRAL
	CPU-GPU間の通信方法の改良
	GPUダイレクト通信の実装結果-Vlasov
	GPUダイレクト通信の実装結果-NEUTRAL
	FFTライブラリの最適化
	まとめ
	スライド番号 16
	スライド番号 17
	スライド番号 18
	スライド番号 19
	スライド番号 20
	まとめ
	まとめ

