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Digest of GGHB Project (2022)

(B) Turbulent particle pinch in flux-driven ITG/TEM
turbulence

 By means of GKNET with the hybrid electron model, we
have investigated flux-driven ITG/TEM turbulence.

 We have found that turbulence directly/indirectly
drives ion particle pinch under ion/electron heating,
leading to the synergetic density peaking of bulk ions
(Bottom right).

(A) Development of global GK code with field aligned
coordinates

 We have introduced the Field-Aligned Coordinates (FAC)
with a shifted metric to our global gyrokinetic code GKNET
and drastically reduced the computational cost.

 We have also implemented numerical magnetic equilibria
and performed linear/nonlinear global 𝛿𝛿𝛿𝛿 simulation for
the JT-60SA ITER-like plasma (Upper right).

[Okuda+, accepted to PFR]

[Imadera+, submitted to FAC-2023]
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Development of global GK code with FAC

For tokamak core/edge turbulence global simulations, we have developed 
GKNET-FAC, which includes the following two advances :

A : Field-aligned coordinate 
system (FAC)

C : We have applied to a nonlinear simulation of ITG instability in 
a JT-60SA plasma [S.Okuda, PFR-2023].

• Allow for simulations with 
realistic tokamak equilibria.

• Significantly reduce the 
computational cost.

• A shifted metric technique [B.Scott, 
PoP-2001]  is used to correct a cell  
deformation. (not included in this 
report)

B : Connection with a 2D
equilibrium code
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A : Field-aligned coordinates - 1

𝑥𝑥 = 𝜌𝜌
𝑦𝑦 = 𝑦𝑦shift − 𝜁𝜁
𝑧𝑧 = 𝜃𝜃 − 𝜃𝜃0

𝑦𝑦shift = �
𝜃𝜃0

𝜃𝜃
𝜈𝜈(𝜌𝜌,𝜃𝜃𝜃)𝑑𝑑𝜃𝜃′

Field-aligned coordinates

𝜈𝜈 =
𝑩𝑩 ⋅ ∇𝜁𝜁
𝑩𝑩 ⋅ ∇𝜃𝜃

0, 1
0,2𝜋𝜋
−𝜋𝜋,𝜋𝜋

 The direction of 𝒆𝒆𝑧𝑧 is 
along the field line. 𝒆𝒆𝑧𝑧 𝒆𝒆𝑦𝑦

𝒆𝒆𝑥𝑥
𝒆𝒆𝑧𝑧 = 𝒆𝒆𝜃𝜃 + 𝜈𝜈𝒆𝒆𝜁𝜁 = 𝑩𝑩/𝐵𝐵𝜃𝜃

Computational grids on a flux surface

Covariant basis vectors 
with a field line(blue)

[Beer+, PoP−1995]
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A : Field-aligned coordinates - 2

 Wavenumbers of resonant 
instabilities are low in the direction 
along the magnetic field line. 

Ideal ballooning mode (n=20)

𝜁𝜁

𝜃𝜃

 By using a coordinate along the 
field lines, instabilities can be 
resolved with a small number of 
computational grids.

 It is particularly effective in the 
edge regions where the higher 
poloidal mode numbers resonate 
with the higher 𝑞𝑞 values.

Computational grids of FAC
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Simulation condition：concentric circular torus with the CBC parameters : 
𝑎𝑎0
𝑅𝑅0

= 0.36,
𝑅𝑅0
𝐿𝐿𝑛𝑛

= 2.22,
𝑅𝑅0
𝐿𝐿𝑇𝑇𝑇𝑇

=
𝑅𝑅0
𝐿𝐿𝑇𝑇𝑇𝑇

= 6.92, 𝑞𝑞 = 0.85 + 2.18
𝑟𝑟
𝑎𝑎0

2

 𝛿𝛿𝛿𝛿 global model with the adiabatic electron.
 The radial domain is set to 0.1 < 𝜌𝜌 < 1.
 1/4 wedge torus is assumed.
 128CPU on JFRS-1 are used.
 𝑎𝑎0/𝜌𝜌𝑡𝑡𝑡𝑡 = 150

Simulations of the linear ITG instability were performed 
on GKNET-FAC and conventional GKNET.

Are the results consistent?
How much computation time was reduced?

A : Field-aligned coordinates - 3
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Linear growth rate

Conventional GKNET

𝑁𝑁𝜌𝜌,𝑁𝑁𝜁𝜁 ,𝑁𝑁𝜃𝜃 ,𝑁𝑁𝑣𝑣∥ ,𝑁𝑁𝜇𝜇
= 128, 48, 256, 80, 16

GKNET-FAC

𝑁𝑁𝑥𝑥 ,𝑁𝑁𝑦𝑦 ,𝑁𝑁𝑧𝑧 ,𝑁𝑁𝑣𝑣∥ ,𝑁𝑁𝜇𝜇
= 128, 48, 16, 80, 16Required

grids

𝜙𝜙𝑛𝑛=16

1/16

Time per 
1 step

4.02 [s] 0.55 [s]
1/7.3

 Both results are consistent.
 The number of time steps required is reduced to 1/5.
 The computation time is reduced to 1/7.3 × 1/5 = 1/36.5 (=2.7%).

A : Field-aligned coordinates - 4
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B : Realistic tokamak equilibria

𝑩𝑩 =
𝑅𝑅0
𝑞𝑞𝑅𝑅2 𝒆𝒆𝜃𝜃 +

𝑅𝑅0
𝑅𝑅2 𝒆𝒆𝜁𝜁

𝐵𝐵𝜃𝜃 𝐵𝐵𝜁𝜁

⋮ ⋮𝐵𝐵𝜃𝜃 𝐵𝐵𝜁𝜁

Conventional GKNET
GKNET-FAC

Equilibrium is set by functions.
Equilibrium is set by numerical data 
of a realistic tokamak equilibrium.

 GKNET-FAC can now handle arbitrarily shaped equilibria, 
including vertically asymmetric equilibria, which could not be 
handled by the conventional GKNET. 7/24



C : Nonlinear simulation of the JT-60SA plasma - 1

9

𝑛𝑛

𝜓𝜓 𝜓𝜓

𝑇𝑇𝑖𝑖 𝑞𝑞

𝜓𝜓

Finally, we have performed the nonlinear ITG simulation using 
the JT-60SA plasma [M.Nakata+, PFR-2014] on GKNET-FAC.

Simulation conditions：

 𝛿𝛿𝛿𝛿 global model with the adiabatic electron.
 The radial domain is set to 0.1 < 𝜓𝜓 < 0.9.
 1/4 wedge torus is assumed.
 10240CPU on JFRS-1 are used.
 𝑎𝑎0/𝜌𝜌𝑡𝑡𝑡𝑡 = 294
 𝑁𝑁𝑥𝑥,𝑁𝑁𝑦𝑦,𝑁𝑁𝑧𝑧,𝑁𝑁𝑣𝑣∥ ,𝑁𝑁𝜇𝜇 = 720, 256, 32, 80, 16
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 Very high poloidal mode number instabilities, 
such as 𝑚𝑚, 𝑛𝑛 = (233, 100), have been resolved.

𝑞𝑞 = 2.33 𝑚𝑚 = 233

𝑛𝑛 = 100

𝛾𝛾
>

0,
𝜔𝜔

/4
<

0
[𝑣𝑣
𝑡𝑡𝑡𝑡

/𝑅𝑅
0]

𝑘𝑘𝜃𝜃𝜌𝜌𝑡𝑡𝑡𝑡

Dispersion relation

The poloidal harmonics of 𝜙𝜙𝑛𝑛=100
H

ei
gh

t [
m

]

Major radius [m]

C : Nonlinear simulation of the JT-60SA plasma - 2
𝜙𝜙𝑛𝑛=100 in a linear phase

[S.Okuda, PFR-2023]
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 The zonal flow has been generated at the position corresponding to 
the linear instabilities.

Major radius [m]

H
ei

gh
t [

m
]

C : Nonlinear simulation of the JT-60SA plasma - 3

Time development of the amplitude of 
the electrostatic potential

𝜙𝜙(𝜁𝜁 = 0) after the nonlinear saturation 

[S.Okuda, PFR-2023]
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• Assume that 8 times as many meshes as the mode number are required.

• If (𝜌𝜌,𝜃𝜃, 𝜁𝜁) coordinates is used, 𝑁𝑁𝜃𝜃 = 370 × 8 ≈ 3000 is required.

• If FAC is used, 𝑁𝑁𝑧𝑧 = 32 is enough as this case.

• Due to FAC, the required meshes are reduced to 32 ÷ 3000 ≈ 1/94.

 Consider the number of meshes required to resolve the mode 𝑚𝑚res =
160 × 2.3 ≈ 370 resonating with 𝑛𝑛 = 160, which is unstable in this case.

 For a simulation up to 𝑡𝑡 𝑣𝑣𝑡𝑡𝑡𝑡/𝑅𝑅0 = 200, it took 12.5 hours using 
10240CPU on JFRS-1.

It cannot be calculated without using FAC.

C : Nonlinear simulation of the JT-60SA plasma - 4
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• The field-aligned coordinate system has been successfully 
implemented into GKNET.

• GKNET has been connected with a 2D equilibrium code.

 Summary

 Future plans

It is now possible to simulate instabilities in large scale 
realistic tokamak equilibria such as JT-60SA.

Summary and future plans

• The development of GKNET will be extended 
to address tokamak edge turbulence.

• Currently, an interface code is being developed 
to generate a computational grid in the 
SOL/divertor region.
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Background: Refueling by Particle Pinch

 Establishment of a refueling method is an
important issue to control nuclear fusion
reactors.

 But, in DEMO-class high-temperature plasmas, a
pellet injection reaches only up to 80-90% of the
minor radius so that the central density peaking
depends on particle pinch, making the
prediction difficult.

*[https://www.fusion.qst.go.jp/rokkasyo/ddjst/]

Schematic picture of
Japan-DEMO*

 While turbulent particle transport has been studied based on local gyrokinetic
models, it is important to study global physics.

 The above analysis is also meaningful to investigate impurity transport such as
Helium ash exhaust.
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Background: Related Theory & Simulation
Turbulent particle flux calculated by fluid theory

Γ𝑠𝑠 = 𝐷𝐷𝑛𝑛,𝑠𝑠
𝑅𝑅
𝐿𝐿𝑛𝑛,𝑠𝑠

+ 𝐷𝐷𝑇𝑇,𝑠𝑠
𝑅𝑅
𝐿𝐿𝑇𝑇,𝑠𝑠

𝐷𝐷𝑇𝑇,𝑠𝑠 = −
4𝐿𝐿𝑛𝑛,𝑠𝑠
𝐿𝐿𝐵𝐵

10
3
𝐿𝐿𝑛𝑛,𝑠𝑠
𝐿𝐿𝐵𝐵

−
𝜔𝜔𝑟𝑟,𝑠𝑠
𝜔𝜔∗,𝑒𝑒

[Nordman+, NF-1990]

Turbulent particle flux calculated by GS2 simulation [Angioni+, NF-2004]

ITG
-> Negative 𝝎𝝎𝒓𝒓
-> Negative 𝑫𝑫𝑻𝑻,𝒆𝒆

 Turbulent particle flux mainly is provided
by (1) the diagonal diffusion term and (2)
the non-diagonal thermo-diffusion term.

 While the sign of (1) is usually positive,
that of (2) can become negative,
depending on the real frequency, etc.

 In fact, the turbulent particle flux shows
the opposite tendency for temperature
gradient between ITG and TEM.

TEM
-> Positive 𝝎𝝎𝒓𝒓
-> Positive 𝑫𝑫𝑻𝑻,𝒆𝒆

(1) (2)
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Purpose of This Research

 In order to understand such view points, we
perform flux-driven ITG/TEM simulations in
the presence of ion/electron heating by means
of the full-f electrostatic version of our global
gyrokinetic code GKNET with hybrid kinetic
electron dynamics.

3D turbulence structure of 𝜙𝜙
calculated by GKNET

 First, we investigate the effect of ion/electron heating on the density peaking
or flattening.

 Second, we separately discuss turbulent particle transport by (1) the E×B
drift with n≠0, (2) the E×B drift with n=0, and (3) the magnetic drift (n=0) in
addition to their physical mechanisms.

𝑑𝑑𝐸𝐸𝑟𝑟
𝑑𝑑𝑑𝑑

= Γ𝑖𝑖,𝐸𝐸×𝐵𝐵(𝑛𝑛≠0) + Γ𝑖𝑖,𝐸𝐸×𝐵𝐵(𝑛𝑛=0) + Γ𝑖𝑖,𝐵𝐵 − Γ𝑒𝑒,𝐸𝐸×𝐵𝐵 𝑛𝑛≠0 − Γ𝑒𝑒,𝐸𝐸×𝐵𝐵 𝑛𝑛=0 − Γ𝑒𝑒,𝐵𝐵
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Parameter Value

⁄𝑎𝑎0 𝜌𝜌𝑖𝑖 100

⁄𝑎𝑎0 𝑅𝑅0 0.36

𝑅𝑅0/𝐿𝐿𝑛𝑛 𝑟𝑟= ⁄𝑎𝑎0 2 2.22

𝛥𝛥𝑟𝑟 30

𝑚𝑚𝑖𝑖/𝑚𝑚𝑒𝑒 10

𝜈𝜈𝑖𝑖∗ 0.025

𝜈𝜈𝑒𝑒∗ 0.025

 In this study, we use GKNET-HE, the full-f electrostatic version with hybrid
electron model.

 Here we consider three cases: (A)Mix (𝑅𝑅0/𝐿𝐿𝑇𝑇𝑖𝑖 = 10, 𝑅𝑅0/𝐿𝐿𝑇𝑇𝑒𝑒 = 10) under
ion/electron heating, (B)ITG (𝑅𝑅0/𝐿𝐿𝑇𝑇𝑖𝑖 = 10, 𝑅𝑅0/𝐿𝐿𝑇𝑇𝑒𝑒 = 4) under ion heating,
(C)TEM (𝑅𝑅0/𝐿𝐿𝑇𝑇𝑖𝑖 = 4, 𝑅𝑅0/𝐿𝐿𝑇𝑇𝑒𝑒 = 10) under electron heating.

Simulation condition

Simulation Condition
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Density Peaking/Flattening

 While density profile are flattened 
by outer particle flux in the case (B), 
a density peaking can be observed 
in the case (A).

 The eigen structures (obtained by 
linear 𝛿𝛿f simulations) are almost 
same between the cases (A) and (B).

Ion &
Electron

Heat Source
Energy

sink
Ion

Heat Source
Energy

sink

Electron
Heat Source

Energy
sink

𝑅𝑅0/𝐿𝐿𝑇𝑇𝑖𝑖 = 10
𝑅𝑅0/𝐿𝐿𝑇𝑇𝑒𝑒 = 10

(A) Mix

𝛾𝛾 =
0.62

𝛾𝛾 =
0.71

𝛾𝛾 =
0.73

𝑅𝑅0/𝐿𝐿𝑇𝑇𝑖𝑖 = 4
𝑅𝑅0/𝐿𝐿𝑇𝑇𝑒𝑒 = 10

(C) TEM

𝑅𝑅0/𝐿𝐿𝑇𝑇𝑖𝑖 = 10
𝑅𝑅0/𝐿𝐿𝑇𝑇𝑒𝑒 = 4

(B) ITG
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Particle Transport by E×B Drift (n≠0) - 1

 When ion/electron temperature 
gradients are steep and sustained by 
ion/electron heating, inward particle 
transport (particle pinch) can be 
observed.

𝑅𝑅0/𝐿𝐿𝑇𝑇𝑖𝑖 = 10
𝑅𝑅0/𝐿𝐿𝑇𝑇𝑒𝑒 = 10

(A) Mix
𝑅𝑅0/𝐿𝐿𝑇𝑇𝑖𝑖 = 10
𝑅𝑅0/𝐿𝐿𝑇𝑇𝑒𝑒 = 4

(B) ITG

𝑅𝑅0/𝐿𝐿𝑇𝑇𝑖𝑖 = 4
𝑅𝑅0/𝐿𝐿𝑇𝑇𝑒𝑒 = 10

(C) TEM
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Particle Transport by E×B Drift (n≠0) - 2
Turbulent particle flux by fluid theory

Γ𝑠𝑠 = 𝐷𝐷𝑛𝑛,𝑠𝑠
𝑅𝑅
𝐿𝐿𝑛𝑛,𝑠𝑠

+ 𝐷𝐷𝑇𝑇,𝑠𝑠
𝑅𝑅
𝐿𝐿𝑇𝑇,𝑠𝑠

𝐷𝐷𝑇𝑇,𝑠𝑠 = −
4𝐿𝐿𝑛𝑛,𝑠𝑠
𝐿𝐿𝐵𝐵

10
3
𝐿𝐿𝑛𝑛,𝑠𝑠
𝐿𝐿𝐵𝐵

−
𝜔𝜔𝑟𝑟,𝑠𝑠
𝜔𝜔∗,𝑒𝑒

[Nordman+, NF-1990]

Positive Negative

 In the present cases, 𝐿𝐿𝑛𝑛,𝑠𝑠/𝐿𝐿𝐵𝐵~1/2.22 and 0.5 < 𝜔𝜔𝑟𝑟,𝑇𝑇𝑇𝑇𝑇𝑇/𝜔𝜔∗,𝑒𝑒 < 1 are
assumed so that 𝐷𝐷𝑇𝑇,𝑠𝑠 is still negative even in the TEM case.

 When the temperature gradient is steep, the non-diagonal thermo-diffusion
term becomes dominant, leading to the inward particle transport.

 As the result, the balance of particle fluxes breaks, leading to the charge
separation.

𝑅𝑅0
𝐿𝐿𝑇𝑇𝑖𝑖

= 10,
𝑅𝑅0
𝐿𝐿𝑇𝑇𝑒𝑒

= 10
𝑅𝑅0
𝐿𝐿𝑇𝑇𝑖𝑖

= 10,
𝑅𝑅0
𝐿𝐿𝑇𝑇𝑒𝑒

= 4
𝑅𝑅0
𝐿𝐿𝑇𝑇𝑖𝑖

= 4,
𝑅𝑅0
𝐿𝐿𝑇𝑇𝑒𝑒

= 10

Γ𝑖𝑖,𝐸𝐸(𝑛𝑛≠0) Negative Weakly Negative Weakly Positive

Γ𝑒𝑒,𝐸𝐸(𝑛𝑛≠0) Strongly Negative Positive Weakly Negative

Γ𝑖𝑖,𝐸𝐸(𝑛𝑛≠0) − Γ𝑒𝑒,𝐸𝐸(𝑛𝑛≠0) Positive Negative Positive
19/24



Ion Particle Transport by Magnetic Drift (n=0) - 1

 When the E×B drift (n≠0) drives 
particle transport, the particle 
transport by the magnetic drift (n=0) 
is enhanced, which cancels with the 
E×B drift (n≠0) driven transport.

 Such a tendency was observed in the 
impurity transport [Idomura+, PoP-2021].

𝑅𝑅0/𝐿𝐿𝑇𝑇𝑖𝑖 = 10
𝑅𝑅0/𝐿𝐿𝑇𝑇𝑒𝑒 = 10

(A) Mix
𝑅𝑅0/𝐿𝐿𝑇𝑇𝑖𝑖 = 10
𝑅𝑅0/𝐿𝐿𝑇𝑇𝑒𝑒 = 4

(B) ITG

𝑅𝑅0/𝐿𝐿𝑇𝑇𝑖𝑖 = 4
𝑅𝑅0/𝐿𝐿𝑇𝑇𝑒𝑒 = 10

(C) TEM
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Ion Particle Transport by Magnetic Drift (n=0) - 2

𝐸𝐸𝑟𝑟 < 0

𝑣𝑣𝐸𝐸,𝜃𝜃 = −
1
𝐵𝐵 𝐸𝐸𝑟𝑟 = − 1 +

𝑟𝑟
𝑅𝑅0

cos𝜃𝜃 𝐸𝐸𝑟𝑟

𝑩𝑩

𝜕𝜕𝛿𝛿𝛿𝛿𝑖𝑖
𝜕𝜕𝜕𝜕 = −

1
𝑟𝑟
𝜕𝜕𝑣𝑣𝐸𝐸,𝜃𝜃
𝜕𝜕𝜃𝜃 𝑛𝑛0 = −

1
𝑅𝑅0

𝐸𝐸𝑟𝑟𝑛𝑛0 sin𝜃𝜃

𝑣𝑣𝐸𝐸,𝜃𝜃 > 0
𝛿𝛿𝛿𝛿𝑖𝑖 > 0

𝛿𝛿𝛿𝛿𝑖𝑖 < 0

 When Γ𝑖𝑖,𝐸𝐸(𝑛𝑛≠0) − Γ𝑒𝑒,𝐸𝐸 𝑛𝑛≠0 > 0, negative mean radial electric field 𝐸𝐸𝑟𝑟 with
𝑚𝑚,𝑛𝑛 = 0, 0 is triggered as below.

 Resultant poloidal 𝐸𝐸 × 𝐵𝐵 flow 𝑣𝑣𝐸𝐸,𝜃𝜃 has a poloidal up-down asymmetry, leading 
to ion density perturbations with 𝑚𝑚,𝑛𝑛 = 1, 0 .

 Such density perturbations can provide negative particle flux by magnetic drift.

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑣𝑣𝐵𝐵,𝑟𝑟 𝛿𝛿𝑛𝑛𝑖𝑖 𝑓𝑓 ∝ 𝐸𝐸𝑟𝑟 sin2 𝜃𝜃 𝑓𝑓 < 0
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Ion Particle Transport by E×B Drift (n=0)

 It is newly found that particle 
transport by not only magnetic drift 
(n=0) but also E×B drift (n=0) are 
enhanced, which also cancels with 
E×B drift (n≠0) driven transport.

𝑅𝑅0/𝐿𝐿𝑇𝑇𝑖𝑖 = 10
𝑅𝑅0/𝐿𝐿𝑇𝑇𝑒𝑒 = 10

(A) Mix
𝑅𝑅0/𝐿𝐿𝑇𝑇𝑖𝑖 = 10
𝑅𝑅0/𝐿𝐿𝑇𝑇𝑒𝑒 = 4

(B) ITG

𝑅𝑅0/𝐿𝐿𝑇𝑇𝑖𝑖 = 4
𝑅𝑅0/𝐿𝐿𝑇𝑇𝑒𝑒 = 10

(C) TEM
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Summary of Turbulent Ion Particle Pinch

𝑅𝑅0/𝐿𝐿𝑇𝑇𝑖𝑖 = 10
𝑅𝑅0/𝐿𝐿𝑇𝑇𝑒𝑒 = 10

(A) Mix
𝑅𝑅0/𝐿𝐿𝑇𝑇𝑖𝑖 = 10
𝑅𝑅0/𝐿𝐿𝑇𝑇𝑒𝑒 = 4

(B) ITG

Γ𝑖𝑖,𝐸𝐸(𝑛𝑛≠0) + Γ𝑖𝑖,𝐸𝐸(𝑛𝑛=0) + Γ𝑖𝑖,𝐵𝐵 − Γ𝑒𝑒,𝐸𝐸 𝑛𝑛≠0 = 0

Strongly
Positive

Γ𝑖𝑖,𝐸𝐸(𝑛𝑛≠0) + Γ𝑖𝑖,𝐸𝐸(𝑛𝑛=0) + Γ𝑖𝑖,𝐵𝐵 − Γ𝑒𝑒,𝐸𝐸 𝑛𝑛≠0 = 0

Negative

Step-1: Particle transport by E×B drift (n≠0) determined by temperature gradients

Step-2: Particle transport by E×B (n=0) and magnetic drift to satisfy the above balance

Γ𝑖𝑖,𝐸𝐸(𝑛𝑛≠0) + Γ𝑖𝑖,𝐸𝐸(𝑛𝑛=0) + Γ𝑖𝑖,𝐵𝐵 − Γ𝑒𝑒,𝐸𝐸 𝑛𝑛≠0 = 0 Γ𝑖𝑖,𝐸𝐸(𝑛𝑛≠0) + Γ𝑖𝑖,𝐸𝐸(𝑛𝑛=0) + Γ𝑖𝑖,𝐵𝐵 − Γ𝑒𝑒,𝐸𝐸 𝑛𝑛≠0 = 0
Negative

Weakly 
Negative

Strongly
Positive

Weakly 
Negative

Negative

Negative Negative PositiveWeakly
Negative

Positive
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Summary

 We have performed flux-driven ITG/TEM simulations in the presence of
ion/electron heating by means of the full-f electrostatic version of our global
gyrokinetic code GKNET with kinetic electron dynamics.

 Enough steep ion temperature gradient can directly provide ion particle pinch
by E×B drift (n≠0) through the thermo-diffusion term.

 Enough steep electron temperature gradient can also provide electron particle
pinch, which can indirectly trigger ion particle pinch by E×B (n=0) and
magnetic drifts though the ambipolarity condition.

 These two findings indicate that turbulence directly/indirectly drives ion
particle pinch under ion/electron heating, leading to the synergetic density
peaking of bulk ions.

Γ𝑖𝑖,𝐸𝐸×𝐵𝐵(𝑛𝑛≠0) + Γ𝑖𝑖,𝐸𝐸×𝐵𝐵(𝑛𝑛=0) + Γ𝑖𝑖,𝐵𝐵 − Γ𝑒𝑒,𝐸𝐸×𝐵𝐵 𝑛𝑛≠0 − Γ𝑒𝑒,𝐸𝐸×𝐵𝐵 𝑛𝑛=0 − Γ𝑒𝑒,𝐵𝐵 = 0

Canceled with
each other

Become negative
by steep 𝑇𝑇𝑖𝑖 gradient

Become positive
by steep 𝑇𝑇𝑒𝑒 gradient

Become negative
to satisfy

this condition
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