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Transient processes in fusion plasmas –
Non-linear MHD modelling with JOREK
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What are MHD transients and why do we study them?
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Interesting multi-physics processes
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Precursors
Explosive onset
Filament formation
Magnetic reconnection
Potentially harmful energy release
Described by magneto-hydrodynamics
Challenging multi-scale problem
Interaction with turbulence

Edge localized 
modes (ELMs)

Solar 
eruptions



Critical for a fusion power plant
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L O S S  O F  R E L AT I V I S T I C  E L E C T R O N S  T O  M AT E R I A L S U R FA C E S
VIDEO FROM ALCATOR C-MOD; R.  GRANETZ,  PRIVATE COMMUNICATION

Large scale violent plasma instabilities constitute a serious risk for large fusion devices

• Edge localized modes
– Periodically expell heat and particles

from the boundary of the plasma and
can reduce the lifetime of wall
components

• Major disruptions
– Complete loss of the plasma

confinement causing strong
heat loads and mechanical
forces onto the machine

• …

Aim to control and mitigate



How do we simulate MHD transients and their control?
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Extended and hybrid MHD
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Magneto-hydrodynamics (MHD) 
describes the plasma as a fluid
by evolution equations for
• Density
• Temperature
• Velocity
• Current
• Magnetic field
• Electric field



Extended and hybrid MHD
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Magneto-hydrodynamics (MHD) 
describes the plasma as a fluid
by evolution equations for
• Density
• Temperature
• Velocity
• Current
• Magnetic field
• Electric field

+ Kinetic effects 
captured by a powerful 
particle in cell module



Extended and hybrid MHD
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Magneto-hydrodynamics (MHD) 
describes the plasma as a fluid
by evolution equations for
• Density
• Temperature
• Velocity
• Current
• Magnetic field
• Electric field

Neutral particles

Impurities Ablation of injected 
pellets

Supra-thermal
particles

Interaction with
material surfaces

Interaction with 
conducting structures

Two-fluid effects

Neoclassical
physics + Kinetic effects 

captured by a powerful 
particle in cell moduleElectrostatic

turbulence



The JOREK non-linear MHD code
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• 3D non-linear extended MHD
• 2D finite elements, realistic geometry
• Toroidal Fourier expansion
• Implicit time stepping
• Large HPC systems
• Strong international community lead by

EUROfusion project TSVV 8 on MHD transients

[https://www.jorek.eu]

[M Hoelzl, GTA Huijsmans, SJP Pamela, M Becoulet, E Nardon E,
FJ Artola, B Nkonga, et al. Nuclear Fusion 61, 065001 (2021)]
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The JOREK non-linear MHD code

M H D  T R A N S I E N T SM A X - P L A N C K - I N S T I TU T F Ü R  P L A S M A P H Y S I K  |  M AT T H I A S  H O E L Z L |  M AY 2 2 N D 2 0 2 3 1 0



Pedestal physics: Type-I ELM cycles, 
small ELM regimes (QCE, EDA-H-mode), 
ELM free regimes (QH-mode), ELM control 
by resonant magnetic perturbations, pellet 
ELM pacing, vertical kick ELM triggering, 
advanced SOL/divertor modelling including 
kinetic neutrals and impurities, plasma-wall 
interaction, X-point radiator …

Main fields of research
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Disruptions: Natural and mitigated 
disruptions, vertical displacement events, 
runaway electrons, wall forces and loads, 

massive gas injection, shattered pellet 
injection, …

Further fields: Energetic particles, stellarator MHD, ITG 
and TEM turbulence, …



What were the main developments during the last JFRS-1 cycle?

(performed by EUROfusion project TSVV 8)
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• JOREK has a set of reduced and full MHD models

• For many applications, reduced MHD is sufficient (eliminates fast magneto-sonic waves);
validity is, however, limited for 1/1 internal kink modes at finite beta

• The full MHD model now includes a neutrals fluid model, diamagnetic drift effects, two-
temperature effects, an impurity fluid model (free boundary extension is under development)

• Also a shock capturing method was implemented

• First application to
impurity shattered
pellet injection in
the JET tokamak:

[A Bhole et al, Computers &
Mathematics with Applications
142, 225 (2023)]

Impurity inclusion in full MHD + shock capturing
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• Eddy current coupling to the 
CARIDDI code was completed and 
verified by various benchmarks

• (Halo current coupling is future work 
needed for accurate horizontal forces)

• This enables accurate 3D plasma 
studies taking into account detailed 
3D models of conducting structures

• One of the first applications is a 3D 
vertical displacement event in the 
ASDEX Upgrade tokamak (figure)

[N Isernia, N Schwarz et al, in preparation]

Accurate 3D wall models
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Selected research highlights
– Predicting the thermal quench in future devices
– Mechanism of force mitigation by massive material injection
– Electrostatic turbulence: PiC modelling of ITGs and TEMs in perturbed plasmas
– Establishing a stellarator model in JOREK
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• Simulation of natural disruption during a hot VDE
• Realistic ITER parameters not easily accessible 

due to computational constraints (~500 ms VDE 
time scale)

• Rescaling of time, resistivity, diffusivity, etc. keeps 
the dynamics largely unmodified (tested by scan)

• ITER simulation with scaling factor 60 – thermal 
quench triggered when q95~2

• Several current spikes during TQ and CQ
• MHD burst at q95~1.3 moves q95 back to 2

Predicting the thermal quench
in future devices
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• MHD burst at q95~1.3 moves q95 back to 2 by 
transferring current into the halo region

Predicting the thermal quench
in future devices
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• A scan in the scaling factor shows a 
nearly linear dependency of the thermal 
quench time on the scaling factor

• This allows to obtain a prediction of 
the thermal quench time in ITER in the 
range of 30 ms

Predicting the thermal quench
in future devices
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Selected research highlights
– Predicting the thermal quench in future devices
– Mechanism of force mitigation by massive material injection
– Electrostatic turbulence: PiC modelling of ITGs and TEMs in perturbed plasmas
– Establishing a stellarator model in JOREK
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Mechanism of force mitigation by massive material injection
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Previously: 

• force reduction explained by reduction of 
poloidal halo currents

New theory:
• The vertical force is connected to the 

current centroid
𝐹𝐹𝑧𝑧 ∝ 𝐼𝐼𝑝𝑝Δ𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

• Impurity injection leads to a flattening of 
the current profile beyond the separatrix

 toroidal currents in the SOL stabilize
the centroid motion and reduce forces

The current centroid remains stationary during a 
mitigated disruption (simulation result)

[N Schwarz, FJ Artola, F Vannini, M Hoelzl et al, Nuclear Fusion (submitted)]



Mechanism of force mitigation by massive material injection
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JΦ [MA/m2]

Trajectory of 

magnetic axis

Trajectory of 

current centroid

Before disruption:

Axis and centroid
move together



Mechanism of force mitigation by massive material injection
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JΦ [MA/m2]

Trajectory of 

magnetic axis

Trajectory of 

current centroid

After disruption:

Large toroidal currents
outside the separatrix

Axis and centroid
motion decouples



Mechanism of force mitigation by massive material injection
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JΦ [MA/m2]

Trajectory of 

magnetic axis

Trajectory of 

current centroid

Late during VDE:

Axis reaches the wall,
i.e., separatrix vanishes

Current centroid
location remains close
to the midplane



Mechanism of force mitigation by massive material injection
– Experimental evidence from ASDEX Upgrade and JET
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SPI mitigated VDEs
Shattered Pellets injected into moving plasma

 Current centroid Zcurr becomes stationary 
after injection leading to force reduction

 Widening of currents in the SOL 
confirmed experimentally

[G
er

as
im

ov
, E

PS
 2

02
0,

 P
1.

10
31

]

Unmitigated

Mitigated

[N Schwarz, FJ Artola, F Vannini, M Hoelzl et al, Nuclear Fusion (submitted)]

JET experiment
AUG experiment



Mechanism of force mitigation by massive material injection
– JOREK simulation results
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Simulations for JET, AUG and ITER
• Relevant experimental features reproduced 

(CQ time, force reduction, Zcurr behaviour)

• Force proportional to 𝑰𝑰𝒑𝒑𝚫𝚫𝒁𝒁𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

JOREK runs for
different injection
times (AUG)

[N Schwarz, FJ Artola, F Vannini, M Hoelzl et al, Nuclear Fusion (submitted)]



Selected research highlights
– Predicting the thermal quench in future devices
– Mechanism of force mitigation by massive material injection
– Electrostatic turbulence: PiC modelling of ITGs and TEMs in perturbed plasmas
– Establishing a stellarator model in JOREK
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• Various hybrid and kinetic models have been established in JOREK for neutrals, impurities, 
energetic particles, runaway electrons

• The following is about the electrostatic ITG and TEM turbulence model with gyro-kinetic ions
and adiabatic or kinetic electrons

• (electromagnetic model with kinetic
thermal ions is on the way)

Electrostatic turbulence: PiC modelling of ITGs and TEMs
in X-point plasmas with applied magnetic perturbations
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[M Becoulet, GTA Huijsmans et al, in preparation]



Electrostatic turbulence: PiC modelling of ITGs and TEMs
in X-point plasmas with applied magnetic perturbations
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[M Becoulet, GTA Huijsmans et al, in preparation]

ITG benchmark
[Merlo 2018]

(Heavy electrons: mi/me=100)
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Electrostatic turbulence: PiC modelling of ITGs and TEMs
in X-point plasmas with applied magnetic perturbations

COMPASS L-mode:

• Larger turbulence in 
presence of RMP fields.

• TEM+ITG turbulence is
stronger than ITG only.



Selected research highlights
– Predicting the thermal quench in future devices
– Mechanism of force mitigation by massive material injection
– Electrostatic turbulence: PiC modelling of ITGs and TEMs in perturbed plasmas
– Establishing a stellarator model in JOREK
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Stellarator model in JOREK
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[Nikulsin N., Ramasamy R., Hoelzl M., et al. Physics of Plasmas 29, 063901 (2022)]



(4, 1) external kink simulation shows the nonlinear
triggering of a (7, 2) internal mode in an l=2 stellarator
mode in a l = 2 stellarator
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[Ramasamy R. et al, Physics of Plasmas (submitted)]



Ongoing verification for optimised stellarator studies
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[Ramasamy R. et al, in preparation]

(Simulations of double tearing mode 
instabilities on the way for W7-A and for 
advanced stellarators [K Aleynikova et al])



Summary
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• MHD transients like edge localized modes or disruptions are critical for fusion reactors

• The non-linear MHD code JOREK aims to predict physics and control of such phenomena
− Many fluid and kinetic extensions beyond basic MHD
− Implicit time stepping, G1 continuous 2D Bezier FEs + toroidal Fourier

• Major recent extensions
− Inclusion of impurities in full MHD and shock capturing
− Coupling to CARIDDI for 3D walls

• Recent highlights
− Disruption mitigation: Mechanism of force mitigation
− Predicting the thermal quench in future devices
− Electrostatic turbulence in perturbed plasmas
− Stellarator MHD is undergoing validation

Summary
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