
Interim report of project TOKEDGE 
A BOUT++ extension for interplay between flow, low-n mode and turbulence 

Haruki Seto (QST)

00/162021-05-18, CSC workshop @ Zoom (online)

Project Title: Collaboration on code development and simulations of tokamak 
edge MHD and turbulence (FY2020-FY2021, 2 years)



‘Outline

• Introduction: BOUT++ code and objectives of TOKEDGE project

• Numerical Issue on Poisson solvers in BOUT++ and a new 2D Poisson solver for low-n modes

• Summary and future work (research plan in FY2021) 

• Preliminary pedestal collapse simulation in annular full tours domain in shifted circular geometry

• Verification test of 2D Poisson solver by linear problems (pressure-driven modes)



‘BOUT++ code and objectives of TOKEDGE project
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TOKEDGE is a two years project to extend BOUT++ framework for tokamak edge simulation 
solving interplay between n=0, low-n, middle-n and high-n modes in diverted geometries

BOUT++ framework as an edge tokamak simulation code [Dudson CPC2009]

• BOUT++ employs flute-ordering k//=0 on Poisson solver for n≠0 modes calculating flow potential 
from vorticity 

✓ Flute-ordering may not be accurate for low-n modes (O(n)~1) especially in diverted geometries

• BOUT++ calculates middle-n (O(n)>1) and high-n (O(n)≫1) structure with high accuracy in complex 
boundary region in tokamak plasmas

• FY2020: development of flute-ordering-free Poisson solver for low-n modes (main topic of this talk) 
➡ improvement of current-driven ELMs, RMPs, full annular tours edge turbulence simulations, etc…



‘Outline 

• Verification test of 2D Poisson solver by linear problems

• Preliminary pedestal collapse simulation in annular full tours domain in shifted circular geometry

• Summary and future work (research plan in FY2021) 

• Numerical Issue on Poisson solvers in BOUT++ and a new Poisson solver developed for low-n modes

• Introduction: BOUT++ code and objectives of TOKEDGE project



‘Numerical issue on Poisson solver in BOUT++ : flute ordering on low-n modes

Poisson solver however cannot be defined as a boundary problem straightforwardly due to 
coexistence of ψ-derivatives (flux-surface coords.) and y-derivatives (field-aligned coords.)

Linearized Poisson solver for n=n’ mode vorticity (ni1/ni0 ≪O(1)) in Fourier space

• 1D Poisson solver in flux-surface coordinates for n≠0 modes using flute-ordering approximation (𝜕y=0) 
[Dudson CPC2009] 

• 2D Poisson solver in field-aligned coordinates for n=0 mode using toroidal symmetry (𝜕x=𝜕𝜓+I𝜕𝜁=𝜕𝜓)
[Dudson PPCF2017] 

?

BOUT++ describes differential operators with radial (ψ) derivative of flux surface coords. (ψ, θ, ζ ) and 
parallel (y) derivative of field-aligned coords. (x, y, z) a.k.a. shifted metric and radial derivative method
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‘Flute-ordering-free 2D Poisson solver for low-n modes is developed

• 2D Poisson solver in flux-surface coordinates for low-n modes with flux-surface coordinates’ metrics

• Poloidal grid resolution must be fine enough to describe poloidal structure of low-n modes
• Self-consistent flow potential without flute-ordering for low-n modes

Workflow in Poisson solver function developed in TOKEDGE

[*] hypre webpage: https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods

Input
RHS value 

Initial guess for PETSc 

coord. transform 
in Fourier space

Calculate potential
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Marge results & 
coord transform 2D Poisson solver 

w/o flute ordering

1D Poisson solver 
w/flute ordering

Convert to real 
space & output  

• Applicable for non-diverted geometry (circular), single-null and double-null diverted geometries
• Iterative solver (PETSc library+ hypre* preconditioning) based on Ref.[Dudson PPCF 2017]



‘Outline

• Summary and future work

• Preliminary pedestal collapse simulation in annular full tours domain in shifted circular geometry

• Ideal ballooning mode instability in shifted circular geometry

• Resistive ballooning mode instability in single-null diverted geometry 

• Introduction: BOUT++ code and objectives of TOKEDGE project

• Numerical Issue on Poisson solvers in BOUT++ and a new 2D Poisson solver for low-n modes

• Verification test of 2D Poisson solver by linear problems (pressure-driven modes)



‘2D Poisson solver test 1: linear ideal ballooning mode in reference circular grid [1]

2D Poisson solver is tested by comparing 
linear IBM growth rate in circular geometry 
by 2D Poisson solver and 1D flute-ordered 
Poisson solver

• constant ion density ni0 =1019 [m-3] • 1/n-th annular wedge domain for n=5,…,12 

[1] Dudson CPC2009, Dudson PPCF2011, Xu NF2011

Resolution Nx Ny Nz

1D Poisson 512 64 16
2D Poisson 512 512 16

Linearized IBM model 

• z-derivatives are evaluated with FFT  • normalized with poloidal Alfven unit
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‘IBM growth rates by 2D solver show good agreement with those by 1D solver 

n=5 perturbed pressure 
by 2D Poisson solver 

• IBM growth rates show good agreement

• 2D Poisson solver test with current-driven linear instabilities is in preparation

n=5 perturbed pressure 
by 1D Poisson solver Linear growth rate of IBM 
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‘2D Poisson solver test 2: linear resistive ballooning mode in single null geometry

Nxcore=195 
Nycore=192
Nz=16

• Dissipations in vorticity equation are 
required for numerical stability in both 
2D and 1D Poison solver. 

Linearized RBM model with dissipation

• constant ion density ni0 =1019 [m-3]

• 1/n-th annular wedge domain for n=3,4
• z-derivatives are evaluated with FFT  

2D Poisson solver is tested in single-null 
geometry by comparing linear RBM growth 
rates by 2D Poisson solver and those by1D 
flute-ordered Poisson solver
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‘2D Poisson solver captures RBM instability but growth rates are different
n=4 perturbed pressure 
by 2D Poisson solver  n=4 perturbed pressure 

by 1D Poisson solver  

➡Further tests (mesh convergence etc…) 
are required to clarify impact of flute-
ordering in complex geometries

RBM eigen-functions are clearly obtained 
by both Poisson solvers but their growth 
rates are different by 6~8%

Linear growth rate of RBM 

07/16



‘Outline

• Preliminary pedestal collapse simulation in annular full tours domain in shifted circular geometry

• Summary and future work (research plan in FY2021) 

• Introduction: BOUT++ code and objectives of TOKEDGE project

• Numerical Issue on Poisson solvers in BOUT++ and a new 2D Poisson solver for low-n modes

• Verification test of 2D Poisson solver by linear problems (pressure-driven modes)



‘Pedestal collapse by resistive ballooning mode in a shifted circular geometry

• Resolution: Nx=512, Ny=128, Nz=256 (n=0,1,…,80) for full annular tours 

four-field RMHD model: RBM+drift wave [Seto CPP2020]

IBM marginally stable shifted circular equilibrium

• n=0,1,2,3,4 modes are solved with 2D Poisson solver without flute-ordering
• n=5,6,…,80 modes are solved with 1D Poisson solver with flute-ordering

• just for test run and radial and toroidal resolution may not be not enough for production run 
• cf.) Nx=1536, Ny=64, Nz=129 for 1/5th annular tours (n=0,5,…155,160) in Seto CPP2020 08/16



‘Pedestal collapse is trigged by n~30 resistive ballooning modes

Computational cost for full tours simulation: 2048core x 2day in JFRS1
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‘Energy loss dynamics during pedestal collapse changes qualitatively
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Wk: 
perpendicular 
kinetic energy 



‘Time evolution of perpendicular kinetic energy from n=0 to n=80 

• Amplitude of kinetic energy of most unstable mode decreases by one order in full torus case

• Pedestal collapse has two phases in full torus case

➡ increase of unstable toroidal modes driving pedestal collapse in simulated system 

• Amplitude of zonal flow (n=0 energy) after pedestal collapse are similar order O(10-7)
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‘perpendicular kinetic energy spectrums just before 1st crash show similar trend

Linear phase: t=100tA Just before collapse: t=180tA Linear phase: t=100tA Just before 1st collapse: t=155tA
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n=5

n=35
n=3

n=32



‘Low-n modes may play a role between two crashes in full torus case 

After 1st collapse: t=175tA After 2nd collapse: t=300tABetween 1st and 2nd collapse t=200tA 2nd collapse t=250tA
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n=2 n=0,1 n=0



‘perpendicular kinetic energy spectrums after crashes show similar trend

Averaged over t=500~1000tA (501 time slices) Averaged over t=500~1000tA (501 time slices) 

n=25

n=25
n=46

n=40
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• Introduction

• Verification test of 2D Poisson solver by linear problems

• Summary and future work (research plan in FY2021) 

• Preliminary pedestal collapse simulation in annular full tours domain in shifted circular geometry

• Issues on Poisson solvers in BOUT++ and a new Poisson solver developed for low-n modes



‘Summary
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2D Poisson solver for low-n modes has been developed to extend BOUT++ for tokamak edge 
simulation solving interplay between n=0, low-n, middle-n and high-n modes in diverted geometries

• Linear IBM growth rates in circular geometry show good agreement between 2D/1D Poisson solvers 

• Linear RBM growth rates in single-null geometry shows 6~8% difference

➡Further tests are required to clarify impact of flute-ordering in complex geometries

• Verification test of 2D Poisson solver by linear pressure-driven modes

• Preliminary pedestal collapse simulation in annular full tours domain in shifted circular geometry

• Pedestal collapse simulation in full-annular domain using low-n Poisson solver works with 
acceptable computational cost

• Introducing low-n modes may change dynamics during pedestal collapse driven by high-n RBM 
instability but may not change turbulence  property after pedestal collapse 

➡ Production run with high-resolution grid (nx=1024, ny=128, nz=512) is required for further analysis 



‘Future work (research plan in FY2021)

Verification test of 2D Poisson solver by linear problems
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• 2D Poisson solver test with current-driven instabilities (kink/peeling mode) for type-I ELMs

• Further ballooning type instability test with ion density profile in diverted geometries

Nonlinear ELM crash simulations
• Pedestal collapse simulation in full-annular diverted geometries
✓Some nonlinear runs have finished in single-null geometries but further code checks are required 

• Simulation of transition from type-I to type-III ELM including resistive ballooning mode (RBM) 
turbulence in diverted geometry with full toroidal mode spectrum [research target in FY2021]

✓ELM crashes in a series of ITER like equilibria with different pedestal collisionality

➡Maybe useful for understanding dynamics of ELMs in ramp-up/-down phase

✓The maximum simulated toroidal mode is scanned to investigate the impact of RBM turbulence on 
energy loss during pedestal collapses in type-I ELMs, type-III ELMs, and their intermediate regime 



‘flux surface and field-aligned coordinates are employed for tokamak edge sim.

•  𝜓: poloidal flux function, [𝜓in, 𝜓out]  
•  𝜃: orthogonal poloidal angle, [0,2𝜋)

•  𝜁: geometrical toroidal angle,[0,2𝜋/N)  

Flux-surface coordinates: (ψ, θ, ζ ) 

𝜃

𝜁
ψ magnetic field lines

• periodic boundary condition inside LCFS
• toroidal:
• poloidal:

➡A number of poloidal grid is required for resonant 
poloidal mode m~nq for high-n modes in high-q 
edge region

Resonant modes have large structures along B 
but has fine structure perpendicular to B
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‘flux surface and field-aligned coordinates are employed for tokamak edge sim.

Field-aligned coordinates: (x, y, z) 
•  x=ψ-ψo: radial label, [xin, xout]  
•  y=θ: parallel label, [0,2𝜋)
•  z=𝜁-𝛼: binormal label, [0,2𝜋/N)

𝜃

𝜁
ψ shift grid in 𝜁 direction by 𝛼  

𝜃=𝜃0

y
z

• periodic boundary condition inside LCFS
• binormal:
• Parallel:

y-direction is aligned to magnetic field line
➡ Grid points in y-dir. can be reduced significantly 
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‘Radial shear of magnetic shear (safety factor) strongly deforms field-aligned grid

𝜃

𝜁
ψ

𝜃=𝜃0

➡Cell deformation strongly degrade accuracy of differencing in radial-direction

 Example: cell deformation effect in 1st radial derivative in field-aligned coordinates

Integrated 
magnetic shear

Local    
magnetic shear
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‘Shifted metrics and radial derivatives evaluate spatial differentials accurately 

• All spatial differences are evaluated in (ψ ,𝜁)-plane or (y, z)-plane in integrated magnetic shear free form 

Example: divergence of vector A Reciprocal basis vector of field-
aligned coordinates 

• FFT-base coordinate transform for differencing in (ψ ,𝜁)-plane

• No mix derivatives with ψ and y due to orthogonality of flux surface coordinates

Coord. transform Coord. transformDifferencing

Integrated magnetic shear free form 
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