IFERC-CSC Workshop on JFRS-1 (18 May 2021 Online)

Study of multiple impurity seeding effect by integrated divertor code SONIC

Shohei YAMOTO

Naka Fusion Institute, QST JAPAN

Impurities: Key player for ITER and DEMO

To obtain understandings of impurity transport processes & to establish a method to control impurity transport are necessary

SOL/Div impurity transport study by means of integrated divertor code SONIC

- Self-consistently computes transport processes of plasma, neutral and impurity
- Computes impurity transport kinetically by IMPMC code
 - 1. Study of mixed-impurity (Ar+Ne) seeding
 - 2. Improved kinetic modelling of thermal force
 - 3. Benchmarking activity against SOLPS-ITER

SOL/Div impurity transport study by means of integrated divertor code SONIC

- Self-consistently computes transport processes of plasma, neutral and impurity
- Computes impurity transport kinetically by IMPMC code

1. Study of mixed-impurity (Ar+Ne) seeding

- 2. Improved kinetic modelling of thermal force
- 3. Benchmarking activity against SOLPS-ITER

One of the possible seeding strategies is mixed-impurity seeding

-QST

To establish control method of impurity transport in the SOL/divertor is necessary 10-30

- Ar-only: radiative in Div./SOL/Edge high charge/ radiative in core
- Ne-only: ③ radiative in Div. ⑦ larger seeding rate than Ar required -> dilution in core

Mixed impurity seeding (Ar + Ne) experiment in JT-60U Better core plasma performance than Ar-only [Asakura NF 2009]

-> Different radiation characteristics of each species Is it possible to control impurity transport?

Ar + Ne mixed impurity seeding simulation in JT-60SA is performed by SONIC

Input parameters

$$P_{out} = 23 \text{ MW}$$

$$\Gamma_{ion} = 2.8 \text{ x} 10^{21} \text{ s}^{-1} \text{ (from NBI)},$$

$$\Gamma_{puff}^{osol} = 4.25 \text{ x} 10^{21} \text{ s}^{-1}$$

$$S_{pump} = 50 \text{ m}^{3}/\text{s},$$

$$D = 0.3 \text{ m}^{2}/\text{s}, \quad \chi_{i} = \chi_{e} = 1.0 \text{ m}^{2}/\text{s}$$

Seeding impurity

Case A: Ar (0.2 Pa m³/s) Case B: Ar (0.2 Pa m³/s) + Ne (0.02 Pa m³/s)^{2.6} (Additional Ne seeding into Case A)

+ intrinsic C impurities (wall material)

C generation: Chemical sputtering, C self sputtering, Physical sputtering by D, Ar, Ne

Additional Ne seeding into Ar-seeded plasma results in low Ar density at SOL top (

-> main source of Ar ions into core

Case B: low Ar density in SOL top by friction force enhanced by high D⁺ parallel flow towards inner divertor region

Impurity transport control in SOL could be possible by mixed-impurity seeding

Ne⁷⁺ has a key role for low Ar density in top of SOL

High Ne radiation power in HFS side near X-point (mainly line radiation of Ne⁷⁺) Additional calculation without line radiation of Ne⁷⁺

- High D⁺ flow cannot be seen: Ne⁷⁺ has a key role for low Ar density in top of SOL Importance of Ne⁷⁺ line radiation is consistent with spectroscopic/bolometric observation in JT-60U Ar+Ne seeding experiment.

Analysis of transient state by time-dependent version of SONIC is ongoing ⁸

Study of mixed-impurity (Ar+Ne) seeding
 Improved kinetic modelling of thermal force
 Benchmarking activity against SOLPS-ITER

Improved modelling of thermal force is necessary for DEMO SOL plasma prediction

Parallel impurity transport process

Friction F_0 + **Thermal force** $F_{\nabla T}$

 $\mathbf{F}_0 \propto m_z \nu_{zi} \mathbf{u}$

$\mathbf{F}_{\nabla T} \propto \nabla T \propto -\mathbf{q}$

Collisionality dependence NOT included in conventional thermal force model

- only assumes high-collisional plasma

DEMO:

high temperature and low density in SOL

- -> lower collisional plasma condition
- To improve $F_{\nabla T}$ model to cover lower collisional plasma condition for DEMO SOL prediction is needed

$\mathbf{F}_{ abla T} \propto abla T \propto -\mathbf{q}$

Two thermal force models based on heat flux models [W. Fundamenski PPCF 2005]

(1)Free-Streaming Energy type model (FSE)
 (2)Generalized Moment equation model (GM)
 Different collisionality dependence
 with parameter I^{MFP}/L

 $\mathsf{FSE} \twoheadrightarrow \mathsf{temperature} \ \mathsf{L}_{\nabla \mathsf{Ti}} := \mathsf{Ti}/\nabla \mathsf{Ti} \ ; \ \mathsf{GM} \twoheadrightarrow \mathsf{flow} \ \mathsf{L}_{\nabla \mathsf{ui}} := \mathsf{ui}/\nabla \mathsf{ui}$

Heat flux model	Coll. dependence	Heat conduction in low coll. plasma $\lambda/L \sim 1$
FSE q ^{FSE}	$\propto \left(1 + \frac{3.9}{\alpha} \frac{\lambda_{ii}^{\rm MFP}}{L_{\nabla_{\parallel} T_i}}\right)^{-1}$	Reduce if ∇T large
GM q ^{GM}	$\propto \left(1 + 5.88 \sqrt{\frac{m_i}{2T_i}} u_i \frac{\lambda_{ii}^{\rm MFP}}{L_{\nabla_{\parallel} u_i}}\right)^{-1}$	Reduce if $\nabla u > 0$ Enhance if $\nabla u < 0$

New extended thermal force models

	Heat flux	Coll. dependence	In low coll. plasma $\lambda/L \sim 1$
F _{⊽T} ^{FSE}	FSE	$\propto \left(1 + \frac{3.9}{\alpha} \frac{\lambda_{ii}^{\rm MFP}}{L_{\nabla_{\parallel} T_i}}\right)^{-1}$	Reduce if ∇T large
F _{⊽T} GM	GM	$\propto \left(1 + 5.88 \sqrt{\frac{m_i}{2T_i}} u_i \frac{\lambda_{ii}^{\rm MFP}}{L_{\nabla_{\parallel} u_i}}\right)^{-1}$	Reduce if $\nabla u > 0$ Enhance if $\nabla u < 0$

New thermal force expected to be weaker than conventional model in DEMO SOL relevant condition

Implement into SONIC

Applied to predictive simulation

Calculation conditions of JA-DEMO

- **Seeded Ar** is simulated in **JA DEMO SOL** by SONIC
- (A) Conventional F_{∇T}
 (B-1) Extended F_{∇T} w. FSE heat flux (α=1.5)
 (B-2) Extended F_{∇T} w. GM heat flux
- Representative poloidal positions & Length along separatrix Lc Positive direction : LFS -> HFS

JA DEMO parameters			
Fusion Power P_{fus}	~1.5GW		
Major rasius R _p	8.5m		
Minor radius a _p	2.4m		
Geo. Center B_T	5.9T		
Plasma current	12.3MA		
Vol. av. Density (SOL density)	6.6x10 ¹⁹ m ⁻³ (2x10 ¹⁹ m ⁻³)		
SOL ion temp. Ti	700eV		
Prad at SOLdiv	~ 200MW		

Lower Ar density in SOL is obtained in new models

Weaker $F_{\nabla T}$ and resultant low Ar density in LFS-upstream and outer divertor plasmas

Introduction of extended $F_{\nabla T}$ reduced n_{Ar} at SOL HFS-upstream in present DEMO due to weaker $F_{\nabla T}$ in LFS-upstream and outer divertor region

Results demonstrate importance of collisionality dependence in thermal force model in SOL plasma of DEMO Study of mixed-impurity (Ar+Ne) seeding
 Improved kinetic modelling of thermal force
 Benchmarking activity against SOLPS-ITER

Aim: Validate/improve transport modelling of both codes

Step 1: D-only reference case in JT-60SAStep 2: D-only case with intrinsic C impuritiesStep 3: Extrinsic Ar-seeded case

- ✓ Development of mesh converter of SOLPS fluid mesh to SOLDOR mesh
- ✓ Installation of IMAS onto JFRS-1 for systematic comparison
- ✓ Development of IMAS interface for SONIC

Summary

1. Study of mixed-impurity (Ar+Ne) seeding

Numerical simulations of SONIC shows that Impurity transport control in SOL could be possible by mixed-impurity seeding

Ar-only seeding: high Ar density in SOL top (due to thermal force) Ar+Ne seeding: low Ar density in SOL top (due to friction force)

 Friction force is enhanced by high D+ parallel flow towards inner divertor region by Ne radiation (Key: Ne⁷⁺ line radiation)

2. Improved kinetic modelling of thermal force Results demonstrate importance of collisionality dependence in thermal force model in SOL plasma of DEMO

- Two models (FSE/GM) of collisionality-dependent thermal force have been developed
- Introduction of extended $F_{\nabla T}$ reduced n_{Ar} at SOL HFS-upstream in present DEMO due to weaker $F_{\nabla T}$ in LFS-upstream and outer divertor region

3. Benchmarking activity against SOLPS-ITER

Benchmarking activity between SONIC and SOLPS-ITER is ongoing under collaboration between JA, EU and IO