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Impurities: Key player for ITER and DEMO Q?
T

Impurities lower plasma temperature by radiation cooling

Example: Extrinsic impurities (Ne, Ar, etc.)
Intrinsic impurities (C, W)
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To obtain understandings of impurity transport processes &
to establish a method to control impurity transport are necessary



SOL/Div impurity transport study

by means of integrated divertor code SONIC
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Self-consistently computes transport processes of plasma, neutral and impurity

Computes impurity transport kinetically by IMPMC code

1. Study of mixed-impurity (Ar+Ne) seeding

2. Improved kinetic modelling of thermal force

3. Benchmarking activity against SOLPS-ITER
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One of the possible seeding strategies is mixed-impurity seeding (‘f‘?
T

To establish control method of impurity transport
in the SOL/divertor is necessary
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Ar-only: radiative in Div./SOL/Edge
@) high charge/ radiative in core
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Ne-only: radiative in Div.
@ larger seeding rate than Ar required
-> dilution in core
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Mixed impurity seeding (Ar + Ne) experiment in JT-60U
Better core plasma performance than Ar-only [Asakura NF 2009]

-> Different radiation characteristics of each species
Is it possible to control impurity transport?

Ar + Ne mixed impurity seeding simulation in JT-60SA
is performed by SONIC



®
Calculation parameters of JT-60SA steady-state high-§ operation Q'?S)T

Input parameters

P, =23 MW ] _

28102 51 (f NB| Computational grid for JT-60SA
Eon - <0X S ( rom )’ [ ] Plasma/Neutral / Impurity
T =4.25 x 1041 s _ [ Neuwral/Impuriy
Spump= 50 md/s, RS =
D=03m2s, %=X=10m'/s = NS o

Seeding impurity

Case A: Ar (0.2 Pa m3/s)
Case B: Ar (0.2 Pa m3/s) + Ne (0.02 Pa m3/s})=s
(Additional Ne seeding into Case A)

+ intrinsic C impurities (wall material)

C generation: Chemical sputtering, C self sputtering, Physical sputtering by D, Ar, Ne



Additional Ne seeding into Ar-seeded plasma results in low Ar density at SOL top L;‘.)

Ar density peaking
@) Case A: Ar-only seeding
® Case B: Ar + Ne seeding (Ne: 0.02 Pa m¥/s)
SOL top (TOP): 6.0 m
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Friction force
+ Thermal force
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Inner midplane

(IM): 8.2 Outer midplane
:82m

/ (OM): 3.8 m

Plot along flux tube

X point (XP): 0.8 mm outside

11.0m X point (XP): from sep. at OM
0.6 m
,:" Ne \
Inner div. plate (ID): Outer div. plate (OD):
11.4m 0.0m

Case A: high Ar density in SOL top by thermal force
-> main source of Ar ions into core

QST

— Case A: Ar-only
----- Case B: Ar+Ne (Ne: 0.02 Pa m¥/s)
---= Case C: Ar+Ne (w/o Ne™ line radiation)
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Case B: low Ar density in SOL top by friction force enhanced by high D*

parallel flow towards inner divertor region

Impurity transport control in SOL could be possible by mixed-impurity seedi7ng
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Ne’* has a key role for low Ar density in top of SOL 'e‘.)

QST
7Impurity radiation power density Ne line radiation power density
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2 4 6 8 10
poloidal length [m]
High Ne radiation power in HFS side near X-point (mainly line radiation of Ne’*)
Additional calculation without line radiation of Ne’*
- High D* flow cannot be seen: Ne’* has a key role for low Ar density in top of SOL

Importance of Ne’* line radiation is consistent with
spectroscopic/bolometric observation in JT-60U Ar+Ne seeding experiment.

Analysis of transient state by time-dependent version of SONIC is ongoing 8



1. Study of mixed-impurity (Ar+Ne) seeding
2. Improved kinetic modelling of thermal force
3. Benchmarking activity against SOLPS-ITER



Improved modelling of thermal force Is necessary for @)
QST

DEMO SOL plasma prediction
Parallel impurity transport process

Friction F, + Thermal force F
Fo, X mzlVzu

For <« VI' «x —q

Collisionality dependence
NOT included in conventional
thermal force model

- only assumes high-collisional plasma

10

DEMO:
high temperature and low density in SOL
-> lower collisional plasma condition

Force [107'8 N]

To improve Fy; model to cover lower
collisional plasma condition

01 K ‘
for DEMO SOL prediction is needed 01 1 10

Plasma ion density ni [10"° m3]
~ Collisionality 10




-
Development of collisionality-dependent thermal force model QLTS)T

Fyr« VI «x —q
Two thermal force models based on heat flux models
[W. Fundamenski PPCF 2005]

(1)Free-Streaming Energy type model (FSE)
(2)Generalized Moment equation model (GM)
Different collisionality dependence
with parameter IMFP/L

FSE = temperature Ly; :=T,/VT, ; GM = flow Ly, :=u/Vu,

Heat flux model Coll. dependence Heat conduction
in low coll. plasma A/L ~1

a Ly,

FSE (FSE . (1 L 39 A%FP>1 Reduce if |V T| large

GM q¢M s g [, NP ' Reduce if Vu>0
R \ 273 " Enhance if Vu<0
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)
New extended thermal force models Q‘fS/T

- Heat flux | Coll. dependence In low coll. plasma A/L ~1

Force [10 '8 N]

Foi °F FSE |, 39N Reduce if |V T| large
X
« LV”Ti
-1
GM ) MFP :
Fo:M GM <1+5 o [T M ) Reduce if Vu>0
e LVnu Enhance if Vu<0
10 New thermal force expected to be
l A — | weaker than conventional model
* coliisional limit| in DEM 1t
/ O SOL relevant condition
gl collisionality- depengent I,
| I Implement into SONIC
ifs“t”rgaf’ﬁévd Applied to predictive simulation
0'10_1 1 10 Of JA'DEMO

Plasma ion density ni [10'°

m3]
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Calculation conditions of JA-DEMO &?T

B Seeded Ar is simulated in JA DEMO SOL by SONIC

B (A) Conventional Fy
(B-1) Extended F 1 w. FSE heat flux (a=1.5)
(B-2) Extended F 1 w. GM heat flux

B Representative poloidal positions & Length along separatrix Le
Positive direction : LFS > HFS

SOL boundary —
Separatrix — JA DEMO parameters

JADEMO Fusion Power Pq ¢ ~1.5GW
M} Major rasius R, 8.5m
~ | ,‘ I ! Minor radius a, 2.4m
TN Geo. Center B; 5.9T
Plasma current 12.3MA
Vol. av. Density 6.6x1019m3
(SOL density) (2x10"9m3)
SOL ion temp. Ti 700eV

1[m] Prad at SOLdiv ~ 200MW 13



Lower Ar density in SOL is obtained in new models Q‘?T

(B-1)
(A) Extended (B-2)
Conv. Fy; FoFoE Extended F M
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Impurity transport simulations with extended Fy;in (B-1) é{ (B-2)
result in low Ar density in SOL upstream 14



Weaker F; and resultant low Ar density &’
in LFS-upstream and outer divertor plasmas QST
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Introduction of extended Fy;reduced n,, at SOL HFS-upstream in present DEMO
due to weaker Fyin LFS-upstream and outer divertor region

Results demonstrate importance of collisionality dependence
in thermal force model in SOL plasma of DEMO



1. Study of mixed-impurity (Ar+Ne) seeding
2. Improved kinetic modelling of thermal force
3. Benchmarking activity against SOLPS-ITER
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Benchmarking activity between SONIC and SOLPS-ITER
under collaboration between JA, EU and 10

56

Aim: Validate/improve transport modelling of both codes

Step 1: D-only reference case in JT-60SA
Step 2: D-only case with intrinsic C impurities
Step 3: Extrinsic Ar-seeded case

v Development of mesh converter of SOLPS fluid mesh to SOLDOR mesh
v Installation of IMAS onto JFRS-1 for systematic comparison
v’ Development of IMAS interface for SONIC
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-,
Summary Q'?S)T

1. Study of mixed-impurity (Ar+Ne) seeding
Numerical simulations of SONIC shows that Impurity transport control in SOL

could be possible by mixed-impurity seeding
Ar-only seeding: high Ar density in SOL top (due to thermal force)

Ar+Ne seeding: low Ar density in SOL top (due to friction force)
- Friction force is enhanced by high D+ parallel flow towards inner divertor region

by Ne radiation (Key: Ne’* line radiation)

2. Improved kinetic modelling of thermal force

Results demonstrate importance of collisionality dependence
in thermal force model in SOL plasma of DEMO
- Two models (FSE/GM) of collisionality-dependent thermal force have been developed

- Introduction of extended Fy,reduced n,, at SOL HFS-upstream in present DEMO
due to weaker Fyqin LFS-upstream and outer divertor region
3. Benchmarking activity against SOLPS-ITER

Benchmarking activity between SONIC and SOLPS-ITER is ongoing
under collaboration between JA, EU and 10
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