Gyrokinetic simulations of multi-scale turbulence on the supercomputer Fugaku

Shinya Maeyama

Nagoya University

IFERC Workshop on GPU Programming 2021, virtual, 14 June 2021

Outline

Optimization of GKV code on the supercomputer Fugaku - 10 min

Multi-scale turbulence simulations toward burning plasma - 10 min

GyroKinetic Vlasov code GKV

- Plasma turbulence simulation based on delta-f gyrokinetic model
- 5D Eulerian solver
 - Fourier spectral method(x, y)+Finite difference(z, v_{\parallel}, μ)
 - Explicit + implicit (collision) time integration
 - MPI/OpenMP hybrid parallelization
- High resolutions in local flux tube geometry
 - Multi-scale simulation from ion to electron scales
 - Multi-species collision
- Free download
 - https://p.phys.nagoya-u.ac.jp/gkv/
 - https://github.com/GKV-developers/gkvp

Flux tube

GKV as an HPC application

Physics model of GKV is extended along with HPC.

Multi-scale turbulence simulations for burning plasma (e, D, T, He)

NOTE: Performance of GKV on Fugaku 12288 nodes (March 2021)

Multi-scale turbulence simulations for hydrogenelectron plasma cf. Maeyama, et al., Phys. Rev. Lett. (2015)

Ion-scale turbulence simulations in complex LHD plasma cf. Nunami, et al., Phys. Plasmas (2012)

ime = 100.5

Ion-scale turbulence simulations in simple Tokamak plasma

cf. Watanabe, et al., Nucl. Fusion (2006)

158,976 nodes, 537 PFLOPS

From K to Fugaku

	К	Fugaku
System perf. [DP PFLOPS]	10.6	537
# node/system	82,944	158,976
# core/node	8	48
Node perf. [TFLOPS]	0.128	3.38
Core perf. [GFLOPS]	16	70.4
Memory size [GB]	16	32
Memory BW [GB/s]	64	1024
Memory Byte/FLOP	0.5	0.30
Interconnect BW [GB/s]	20 (= 5.0 x 4)	40.8 (= 6.8 x 6)
Interconnect Byte/FLOP	0.156	0.012

Memory-BW-limited code can still be efficient.

Commun./Comput. cost ratio becomes much severe. \rightarrow Need to increase arithmetic intensity.

Typical computation/comm unication of GKV

$$\begin{split} &\frac{\partial \tilde{f}_{s}}{\partial t} + \left(\nu_{\parallel} \frac{\boldsymbol{B} + \tilde{\boldsymbol{B}}_{\perp}}{B} + \nu_{sG} + \nu_{sC} + \tilde{\nu}_{E} \right) \cdot \nabla \tilde{f}_{s} + \frac{d\nu_{\parallel}}{dt} \frac{\partial \tilde{f}_{s}}{\partial \nu_{\parallel}} = S_{s} + C_{s}, \\ &\nabla_{\perp}^{2} \tilde{\phi} = -\frac{1}{\varepsilon_{0}} \sum_{s} e_{s} (\tilde{n}_{s} + \tilde{n}_{s,\text{pol}}), \\ &\nabla_{\perp}^{2} \tilde{A}_{\parallel} = -\mu_{0} \sum_{s} e_{s} \tilde{u}_{\parallel s}, \end{split}$$

- Domain decomposition of 5D phase space and plasma species $\left(n_{\chi}, \frac{n_{y}}{P_{w}}, \frac{n_{z}}{P_{z}}, \frac{n_{v}}{P_{w}}, \frac{n_{\mu}}{P_{w}}, \frac{n_{s}}{P_{s}}\right)$
- Density/current evaluation: MPI_allreduce among (v,m,s)
- Finite difference (z,v): MPI_isend/irecv to (z,v)
- 2D FFT (x,y): MPI_alltoall $\left(n_{\chi}, n_{y}, \frac{n_{v}}{P_{v}}, \frac{n_{z}n_{\mu}}{P_{z}P_{\mu}P_{w}}, \frac{n_{s}}{P_{s}}\right) \rightarrow$ Improved implementation [Asahi'19CCPE]
- Implicit collision: MPI_alltoall $\left(n_{v}, n_{\mu}, n_{s}, \frac{n_{z}}{P_{z}}, \frac{n_{x}n_{y}}{P_{w}P_{v}P_{\mu}P_{s}}\right)$

→ MPI-free iterative solver [Maeyama'19CPC]

Improved parallel spectral calculation

Spectral calculation of nonlinear advection $N = v_x \partial_x f + v_y \partial_y f$ by transpose-split method.

As-is (y2x):
$$ik_x \hat{f}_k$$
, $ik_y \hat{f}_k \left(n_x, \frac{n_y}{p_w}, \frac{n_z}{p_z}, \frac{n_v}{p_v}, \frac{n_\mu}{p_\mu}, \frac{n_s}{p_s} \right) \rightarrow 1D$ -FFT → Transpose → 1D-FFT →
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \left(\frac{n_x}{p_w}, n_y, \frac{n_z}{p_z}, \frac{n_v}{p_v}, \frac{n_\mu}{p_\mu}, \frac{n_s}{p_s} \right) \rightarrow \text{Nonlin. Adv.} \rightarrow \text{FFT} \rightarrow \text{Transpose} \rightarrow 1D$$
-FFT
$$New (y2zm): \hat{f}_k \left(n_x, \frac{n_y}{p_w}, \frac{n_z}{p_z}, \frac{n_v}{p_v}, \frac{n_\mu}{p_\mu}, \frac{n_s}{p_s} \right) \rightarrow \text{Transpose} \rightarrow \hat{f}_k \left(n_x, n_y, \frac{n_v}{p_v}, \frac{n_z n_\mu}{p_z p_\mu p_w}, \frac{n_s}{p_s} \right) \rightarrow 2D$$
-FFT → Nonlin. Adv. $\rightarrow 2D$ -FFT \rightarrow Transpose

Pros: Data transpose is reduced. (**y2x**: 3 variables \rightarrow **y2zm**: 2 variables with 3/2 dealiasing) $\rightarrow \sim x1.8$ speed up of nonlinear term (JFRS-1 192 node) Cons: Wavenumber parallelization is limited up to $\frac{n_z n_\mu}{P_z P_\mu} > P_w$. \rightarrow Switch **y2zm** to **y2x** for a large number of parallelization P_w .

* MPI_alltoall among $P_v P_\mu P_s$ in sub-communicators, not global commun.

Implicit collision solver [Maeyama'19CPC]

When considering Coulomb collision, velocity-dependent collision frequency $(\nu \propto 1/\nu^3)$ severely restricts CFL.

Our strategy

Since collision is an integro-differential operator over (v_{\parallel}, μ, s) ,

1. Data transpose by MPI_alltoall

$$f\left(n_x, \frac{n_y}{P_y}, \frac{n_z}{P_z}, \frac{n_v}{P_v}, \frac{n_\mu}{P_\mu}, \frac{n_s}{P_s}\right) = f\left(n_v, n_\mu, n_s, \frac{n_z}{P_z}, \frac{n_x n_y}{P_y P_v P_\mu P_s}\right)$$

- 2. Iterative implicit solver for $f(v_{\parallel}, \mu, s)$, independent to (x, y, z). (The iteration is MPI communication free!)
- 3. Transpose back again by MPI_alltoall

* MPI_alltoall among $P_{\nu}P_{\mu}P_{s}$ in sub-communicators, not global commun.

Implicit collision solver [Maeyama'19CPC]

- ✓ Implicit solver allows stable computation over larger time steps.
- Arithmetic intensity and computational performance are enhanced.
 - Promising for manycore processor.

Performance for a nonlinear run on FX100 (1.8x10¹⁰ grids)

	4th Explicit	2nd Implicit
FLOPS (/PEAK)	8.67 TFLOPS (4.01%)	25.78 TFLOPS (12.5%)
Elapsed time per step	1.76 sec/step	3.13 sec/step
Time step size	$5 \times 10^{-5} \text{ R/v}_{ti}$	$1 \times 10^{-3} \text{ R/v}_{ti}$
Speed-up to solution	1	10 times faster

Accuracy of the scheme

10 / 20

- Segmented MPI process mapping
- Pipelined computation-communication overlap

These techniques are available on Fugaku as well as K. [Maeyama'15PC]

Weak scaling of GKV on Fugaku

Excellent scaling up to target problem size ~ 1.24×10^{12} grids.

(Fugaku 12,288 nodes, 589,824 cores, 49,152MPI, 12OpenMP, rankmap 8x32x48)
✓ 3.1PFLOPS

- ✓ 7.5% to peak FLOPS
- ✓ Parallel efficiency 83.7%

Bottleneck of performance degradation Communication costs of linear and nonlinear terms increase as grid and MPI number increases, which cannot be masked by related computations.

Outline

Optimization of GKV code on the supercomputer Fugaku - 10 min

Multi-scale turbulence simulations toward burning plasma - 10 min

Background

Recent gyrokinetic simulations reveal the importance of multi-scale interactions.

- Turbulent transport affected by electron scales [Maeyama'15PRL, Maeyama'17PRL]
- Multi-scale interactions are necessary to explain an experimental heat flux on Alcator C-Mod. [Howard'16NF]
- DIII-D results suggest the importance of multiscale interactions in ITER [Holland'17NF]
- Recent multi-scale studies on JET [Bonanomi'18NF,Mantica'20PPCF,Mariani'21IAEA]

Our physical target on Fugaku: Extrapolation of multiscale interactions toward burning plasma

- ✓ High electron temperature (Te>Ti)
- ✓ Electron, Fuel (D,T), Ash (He) mixture

Snapshot of potential fluctuations

Turbulent transport spectrum

TEM/ETG multi-scale turbulence simulation

- Electron temperature gradient modes (ETG) grow initially. After that trapped electron modes (TEM) appear.
- TEM growth rate is reduced in the presence of ETG turbulence.
- TEM turbulence is suppressed in the presence of ETG turbulence.

→ ETG stabilizes TEM. → This suggests the importance of multi-scale interactions even in burning plasma.

Time evolution of electrostatic energy

High-res. multi-scale simulation (Full-k) and low-res. ion-scale simulation (Low-k) are compared.

<u>Color map of perturbed electron pressure and</u> <u>streamlines of turbulent ExB flows</u>

ETGs coexist with TEMs.

→ Small-scale ETG turbulence dissipatively stabilizes largescale TEM.

16 / 20

Impacts of turbulent transport

 Large-to-small interactions: ETG peak is suppressed after TEM growth.
 Small-to-large interactions: TEM amplitude is also reduced in the presence of ETG.

 $\begin{array}{l} \underline{\text{Comparison of heat flux [gyro-Bohm unit]}} \\ \text{Electron}: Q_e = 524 \quad (\text{low-k}) \rightarrow 88 \quad (\text{Full-k}) \\ \text{Fuel}: Q_D + Q_T = 17 \quad (\text{Low-k}) \rightarrow 3.7 \quad (\text{Full-k}) \\ \text{Ash}: Q_{\text{He}} = 1.4 \quad (\text{low-k}) \rightarrow 0.3 \quad (\text{Full-k}) \end{array}$

 \rightarrow This result firstly demonstrates the possibility of reduction of Qe by cross-scale interactions.

 \rightarrow It affects not only electrons but also fuel ions and helium ash.

Wavenumber spectra of electron energy flux

High-res. multi-scale simulation (Full-k) and low-res. ion-scale simulation (Low-k) are compared.

Velocity-space structures

✓ Velocity-space dependent turbulent flux

$$\Gamma_e^v(z, v_{\parallel}, \mu) = \int_0^{L_x} \frac{dx}{L_x} \int_0^{L_y} \frac{dy}{L_y} \left(\frac{-\nabla J_0 \tilde{\phi} \times \boldsymbol{b}}{B_0} \cdot \nabla x \right) \tilde{f}_e$$

 $\begin{array}{l} \left\{ \begin{array}{l} \mathsf{Cf.} \\ \mathsf{Particle flux } \Gamma_e = \left\langle \int_{-\infty}^{\infty} dv_{\parallel} \int_{0}^{\infty} dv_{\perp} \, 2\pi v_{\perp} \Gamma_e^{v}(z, v_{\parallel}, \mu) \right\rangle \\ \mathsf{Energy flux } \mathsf{Q}_e = \left\langle \int_{-\infty}^{\infty} dv_{\parallel} \int_{0}^{\infty} dv_{\perp} \, 2\pi v_{\perp} \frac{m_e v^2}{2} \Gamma_e^{v}(z, v_{\parallel}, \mu) \right\rangle \end{array} \right\}$

Isotropic dependence by magnetic drift resonance of toroidal ETG. [black dotted line]
 Precession drift resonance by trapped electron [between green lines] dominates in TEM.

Low-res. ion-scale sim. (Low-k)

High-res. multi-scale sim. (Full-k) (i) initial ETG, (ii) TEM/ETG saturated.

Schematic explanation of TEM/ETG cross-scale interactions

Small-to-large interactions:

 ETG turbulence distorts trapped electron trajectory, and reduces the precession drift resonance of TEM.

Large-to-small interactions: ✓ TEM turbulent eddies shears ETG streamers. (even when no strong zonal flows [Asahi'14PoP])

19/20

Summary

<u>HPC</u>

- ✓ Physical applicability of GKV is extended along with HPC.
- ✓ High Memory-Byte/FLOP=0.30 but low Interconnect Byte/FLOP=0.012 on Fugaku.
 - \rightarrow Reduce communication cost of GKV by mapping, overlap, improved implementation.
- ✓ GKV achieves excellent scaling and 3.1 PFLOPS (7.5% to peak) on Fugaku 12,288 nodes

<u>Physics</u>

- ✓ Multi-scale turbulence simulation toward burning plasma (High T_e>T_i, mixture of e,D,T,He)
- Cross-scale interactions changes turbulent spectrum, which affect turbulent transport levels of not only electron but also fuel D,T and He ash.
- \checkmark The result firstly demonstrated the possibility of reduction of Q_e by cross-scale interactions.
- ✓ Large-to-small interactions: TEM turbulent eddies suppress ETG streamers
- Small-to-large interactions: ETG stabilizes TEM by disturbing precession drift resonance
 Analogy 1: damping of short-wave-length zonal flow by ETG [Maeyama'15PRL; Maeyama'17NF]
 Analogy 2: destruction of MTM current sheet by ETG [Maeyama'17PRL]
- Mutual exclusive nature between disparate-scale turbulence