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Development of SONIC V4 and recent progresses
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*Modeling framework using MPMD (Multiple-Program Multiple-Data) approach and
MPI (Message Passing Interface) data exchange scheme has been developed for
(1) Each code can be independently developed, added and replaced.
(2) Improved numerical efficiency: e.g. number of CPUs used for each code can be
arbitrarily adjusted to optimize performance.
= Power and particle exhaust of DEMO divertor, consistent with Ar and He transports,

has been recently simulated.

(1) Restructured SONIC code with MPMD framework (2) Improved numerical efficiency
for multi-impurity calculation

Execution of SONIC code components MASTER

integrated divertor code, SONIC

~ SONIC on new integrated-modeling framework ~ based on the MPMD framework ] SOLDOR
) NEUT2D
Plasma ¥ - Impurity(Ne) SPMD IMPMC for Ar
ata exchange/share o . MPMD [ IMPMC for He
fluid — Impunty(w) % < Simultaneous execution MPMD
Impurlty(He t % Multi impurity species
MC kinetic 3 <~ Optimized use of CPUs
o —
(6]
=
M"(ljell("tral Irlr\‘AF)CuI:lty(f\r) A number of models 2
inetic ineuc are attachable.
MC: Monte-Carlo -
» No. of CPUs

Recent progresses of modelling to evaluate influences under the DEMO condition:

*Kinetic models of thermal force on impurity transport and flux limiter for ion conduction for low
collisionality SOL in DEMO were developed [5, 3].

- Elastic collision model of D-D, D-D,, D,-D,, D-He was incorporated, and improvement is in progress[6]

- Self-consistent photon transport simulation was performed for SlimCS [7] and JA DEMO.
[5] Y. Homma, et al, Nucl. Fus.60 (2020) 046031, [6] K. Hoshino, et al., PET-18 (2021) [7] K. Hoshino, et al., Contrib.
Plasma Phys., 56 (2016) 657.




| 1 SONIC simulation for EU-DEMO divertor -4-
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SOLPS mesh has been successfully converted from SOLPS-ITER to SONIC format.
Liner is included in the private region and n-transport is performed to exhaust-slot.

Poloidal mesh: 26 below Xp, 47 along main plasma(JA-DEMO: 40 below Xp, 68 for main)
Radial mesh: 19 covers between r™d =0 - 7.6 cm (JA-DEMO: 25 r™d =0 - 3.2cm)
Calculations with following parameters started from 2021/10 :

Given at C-E boundary (r/a=0.98): P, .= 160 MW, /.= 5x10%*
e Total radiation loss (P,.4) scan was performed by Ar seed feedback:
3 cases: P,,4=96,112, 128 MW (f,,4=

SOLPS mesh for EU-DEMO (2019) SONIC mesh (incl. MC) for EU-DEMO

P..s/P..+=0.6,0.7,0.8).

boundary -\ Z
(Ma=0.98)  \Su  Pdut A

Z(m) |

R (m)
Subba, et al, Nucl. Fusion 61 (2021) 106013

Z (m)f
-5 _

core- edge boundary(r/a 0. 98)

- 70cm

Ar and D-puff locations




Input parameters are similar to EU SOLPS simulation

-5-
Exhaust parameters are similar to those by SOLSP-ITER simulation (F.Subba NF2021):
P =160 MW, 7/, =5x10%'D/s at C-E boundary : same as SOLPS.

o [ .=4.8-9.6x10%2 D/s (similar to JA) was scanned: smaller than 2x10?%3 for SOLPS.

p
® Spump= 200 m3/s : similar to SOLPS (R =0.99022 corresponds to 200~210 m3/s)

e Diffusion coefficients are a key parameter (SONIC sets 1 area in Edge, 2 areas in SOL)

= y was reduced to 0.2 m?/s both at Edge and SOL
= JA-DEMO cases (¥=0.5 or 1 m?/s, D=0.15 or 0.3 m?/s) were also calculated.

=l eqrpenrert o Y7 SONIC Note: JA DEMO also calculated:
1 X - SOLPS'ITER : — XX, . ]‘ ote czzaise IS alsO Calcu ate
i x=0.50r1m [s
;:0_8 F.Subba NFZO:Z]. 1 08 . D =0.15 or 0.3 rnZ/S
i;o.e E D=0.41 1 0.6 . i
{ D=0 | i D=04
S04r 0.2 /: i 04 .7 _D=02 H
02f X=7- E X=019 4 0.2 - XL - E ¥ =0.2
A B R
L O eeordinate (my %% %% 01 008 -006 -0.04 -0.02 0 002 004 006 0.8

OMP coordinate (m)
Figure 4. Transport coefficients used for the modeling described in this work. For Ar |m p u rlty, Dimp= O 3 mZ/S (In I M P M C)

e Flux limiter (same): same as SOLPS
lon heat flux: a=10 electron heat flux: a=0.2 viscosity: a=0.5
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: Detachment is produced at outer-strike point (f,,49v~0.7)
bacose  P@AK Grarger IS SENSitive to D-puff rate (T, T, profiles)

-6-

D,-puff rate is increased from 4.8 to 7.2x10%2D/s at the same Ar radiation fraction of
Frad™ = (Prag®®+P12q®™)/Psep ~0.7 = both n, ™ and P44t are increased.

e Narrow detachment (T4 <2 eV) is produced near the strike-point (r“V<2 cm).
® Peak gyget is Seen at the boundary of attached plasma region (r**~2-3 cm), which is
significantly reduced from 21 to 12.3 MWm-2 due to reduction of local T,%V and T4V,

n,md~2.1x1019m"=3
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P, -0 ~24MW
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"’!?'%Detachment is extended with increasing P, 4 (f..4%V~0.8)

Peak Gtarget IS reduced below 10MWm2, when detachment is extended.
I _7_

Ar seeding is increased to f,,4%" ~0.8 with Ar rate ~17x10%°Ar/s (4 times higher!)

since SOL n,"9 is reduced (from 2.1x10%°) to 1.5x10%° m-3

e Partial detachment is extended near the strike-point (r“v<9 cm).
* Peak gaer appears in the detached region and is further reduced to 4.5 MWm™;

plasma transport load is reduced, and surface rec. & neutral loadings are increased.

_ n,md~1.5x10°m-3 at high [, ,°~9.6x1022s1

BRI T L EEEas AL B 1100 ¢ at g prf 9 6 O > (m>) d|etaclh(<9§:m) .a-tta-C-h---.-(f-}-/-)ﬂoo
[ = high 1,,#""™~17x10%°s1is required. i ]

Prag®" 1 ~45MW

10%!

Prag®0 ~57MW

1020:_ ':10

neutral load
radiation load
surface rec.

"0 01 02 03 04 05 06

06 05 -0.4 -03 0201 0
Distance from separatrix (m) Distance from separatrix (m)
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i %, D for JA-DEMO simulation are applied (f,,44=0.7-0.8)
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Diffusion coefficients for JA-DEMO (larger y: 1.0m?/s, smaller D:0.3) are applied:
Ar seeding is 1.3x10%°Ar/s (f..,%V~0.7) and 6.3x10%° (f,.44v~0.8): similar to JA DEMO.
SOL n,md is decreased from 2.6x10%° m=3 to 2.0x10%° m=3,

® f.2a®V~0.7: Detachment is wider and peak gy, is reduced (in attached region).

® fr2a®V~0.8: TWO Goget Peaks appear in detached and attached regions; continuing cal.

. : Psep=154MW/f.2q=0.79/T pufi=4.8x1022
n.mid~?2 6x1019m-3 Psep=139MW/f;2g=0.66/I pufi=4.8x1022 n.mid~?2 0x1019m-3 P

€ ox10 (M%) _detach(<5cm) Voo (m?) detach(<8em)__attach €4,
Fouf™13x100s1 [ ~5.3x1020st [ 2 L
Prog@’0 ~35MW Prag@’0 ~51IMW

0.1 0.2 03 04 05 06

Total heat load (5.1MAmM™2) 7]
neutral load .

‘ radiation load I neutral load
S surface rec. 1l &5 radiation load
ﬁ" pl surface rec.

asma transport (3.8MAn:’r2) |
] plasma transport(1.8MAM2)

\! 7.0

0 01 02 03 04 05 06 . : L et
. . 0 01 02 03 04 05 06
Distance from separatrix (m) 75 8.0 R(m) 85 Distance from separatrix (m)




. ' Effect of diffusion coefficients on T, and T, profiles
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e T,Md and T™d gradients are generally large for lower y cases (0.2m?/s):
nseP (1.5x10%° m3) is lower, and T *¢P (452 eV) and T3¢ (762 eV) are higher.
e Fuel dilution is relatively small, whereas large Ar puff rate and low n ™
= low radiation loss at edge and SOL regions.

TeP=461 eV
T.5eP=261 e\| 3

Tser=762 e\
T,5eP=452 e\{ 3

X i,e=1 .0
I %j e=D=0.2 r—"e=0'2/ D04 T D=0.3
1o ™~17x10%0 1 I 5u6™5.3x10%%s1
Psep=152MW/f,44=0.8/T puit=9.6x1022 Psep=154MW/frag=0.79/T puti=4.8x102
V 19 -3 eV 1019 -3
104 (Y0 ~— i s [oZ A — AT s
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| ] fraddlv 0.8 [ I ]
| 4 — | 4
| S I
| |
|

108} 103}

it T ———
-

______________ . ]2
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: NN T+ = : ; | Z
| : | | -
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| " Effects of diffusion and ion transport on heat flux profile
bEmo DEsiGN -10-
e Electron heat flux is dominant near separatrix (near-SOL):
decay length of total heat flux (A4.4e"*") is similar to that of el. heat flux (A,."¢").
e lon heat flux becomes dominant in the outer flux surfaces (far-SOL):
= “Shoulder” is produced in g, profile by ion (convective) transport.
Profiles near X-point (LFS SOL)

(Wm-2) (Wm-2)
%ie=0.2, D=0.4m3s"1 : x.e_1 0, D=0, 3m231
1098 109 . 1 Jnear- E
) Ile+4/h A 2.4mm 3
qile+9q/i rq"®a:1.5mm d /q +q ‘qf ]
 far. N AqQtar:17.1.0mmy
rq'@:14.5mm R -
L) . . { Noted that 4,,."®* ~3.6mm (larger)
- hear SN qlle ,q"®a:2.4mm e ,
108 Qile Aq"®a1.4mm 108k N N\ - tar for ITER simulation with the same y
E o\ N 4q@13.0mm 3 _1 gp-0.3 m2s.
FN o A.S.Kukushkin. et al., J. Nucl. Mater.
N AN 38 (2013) S203.
107 107 Qi ---“"::'“::.\
Detach at div.(rde<9cn%5‘\ Detach at div.(r™V<8cm)
106 106
0 1 2 3 4 0 1 2 3 4
Distance form separatrix (cm) Distance form separatrix (cm)
mapping to midplane mapping to midplane

1.44x10%xp(-1/1.q"®2")+0.88x108exp(-r/Aqf)  0.60x109%xp(-1/1q"®2")+0.80x108exp(-r/1q2")
1.95x109exp(-r/Aqnear+0.97x108exp(-r/iqfa") 0.85x109%exp(-r/1q"€a")+1.94x108exp(-r/Aq™")



- SEEnE -~
pUEEEEEEEE
EEEERE

" “Flow reversal” (M// =0.2~0.4) is produced above divertor target
by locally increasing neutral ionization and plasma pressure

-11-

e Jon convective transport produced by the flow reversal contributes to ion heat flux
towards the upstream SOL and produces a “shoulder” in the g,;*° profile.

e Flow reversal also reduced the impurity retention in the outer divertor, which may sustain
the attached plasma region and produce the partial detachment.

Mach number

0.4} toward midplane

0.2

-0.2F

-0.4f toward divertor

near X-point

i % ie=0.2, D=0.4m2s"1
O \""""""—"—"—"——-

o

-5.0
-5.5 E 7
-6.0 :
-6.5 I

-7.0

3

1 2
Distance form separatrix (
mapping to midplane

y]

R (M) 8.5

4

Mach number near X-point

0.4 | toward midplane :1
: Y ie=1, D=0.3m2s-1

3 ward dlvertor

(o} 1 2 3 4
Distance form separatrix (cm
apping to midplane

X-point

5.5 ,

Ref. Krasheninnikov, et al.
Nucl. Fusion 1992, 32, 1927.

-6.0

On the other hand, the flow reversal

BB from the outer target was NOT found
-20 in the major tokamak experiments,

I -30 i.e., flow to the target (forward)

| direction was measured near the Xp.

-6.5

-7.0

g L | to outer div. <— —> toinner div.




Progress summary: SONIC simulation for EU-DEMO .
With support from EU experts, SONIC simulations for EU DEMO divertor have been carried out
successfully with similar power exhaust parameters as EU SOLPS-ITER used.
eRadiation power scan (f,,q=Prag/Poui= 0.6—0.7—0.8) was performed for two diffusion coefficient
cases (7 =0.2-0.3 m?st used by EU SOLPS-ITER, and y =1.0 m?st used for JA DEMO).
e Low ¥ =0.3 m?s! case, peak Giarget Was quickly reduced from 26— 12~21— 4.5 MWm:
Peak grarger Was seen at attach-detach boundary (r““~3cm), which is sensitive to T4, T4V profiles.
For fr.q= 0.8, peak gt appeared at detached region: plasma load was significantly reduced.
e High ¥ =1 m?s’! case, peak Giarget Was gradually reduced from 12— 5.5— 3.54 MWm-2:
Peak Giarget beCame comparative when it appeared at the detached region.
e Effects of diffusion and ion transport (flow reversal) on g,-profile and divertor were investigated.

= Distributions of upstream SOL plasma (g ¢/, 7/, and plasma flow) and impurity (thermal and
friction forces) will be compared for comparable input condition on SONIC & SOLPS-ITER.

EU SOLPS-ITER simulations are now on-going with 2 focusses:

(a) Effect of shielding liner of the DEMO divertor,

(b) Simulation in new equilibrium variant released in 2021 with higher B-field,
which will affect the divertor detachment.

SOLPS-ITER result: w/o Liner (f,.4~0.8)

2.4AMWm?~?

new equi’,librium (Iarger expansion)

\ .~

density (Wm )
- o

r deposition




"% 2. He exhaust study in Plasma edge and Divertor

% Heion flux equivalent to P;,;,,: 1.5GW is exhausted from core-edge

JOT TTTTTTTTTT . _13_
Simulation parameters for He exhaust study:

"He flux (/,."¢=5.3x10? s'!) is exhausted, equivalent to Py, =1.5GW (/,,°=1x10%*s*)
- Reference diffusion coefficient (D;, D;,,, = 0.3m?/s) is the same for D, He and Ar
= in 2021, y and D were reduced to half values, and gas puff scan was performed.

, Mesh#161215 Fout :1x10%? Ds™ Fout“e‘5 3x10%0 Hes™ (£ gyM/ 15 ®~5%)

I‘\" core-edge %D | -

T

% ~Qo.unclady_ )
g T % Gas puff from midplane
A ¥ @f | D-gas puff scan: /¢ = 4.8-9.6x1022 D/s
in
or
zm} of
' : A% Ar puff
4 5 3 0 \ vacuume "\\) ol
@m / 80:
Z ecyy, \
6} sub-divertor ) .
. st Same absorption probability
- pumping {is given for D, He, Ar.
_7‘ ] ! e ]
5 6 7 am B 9



He concentration in detached divertor -14-

= Chetd9e = 4-7% similar to exhausting 71,/ / 5: Accumulation of He is NOT seen.
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With increasing gas puff rate, detachment width increases and peak q,,,,.. is reduced.

He concentrations at SOL and plasma edge (C,.¢%¢ = n,,,299¢/ne9¢) :
* In-out asymmetry of C,, in SOL/divertor is 2-3 times, but decreasing near separatrix.
- C,,9%%€ = 4-7% at plasma edge (smaller than SOL) = Accumulation of He is NOT seen.

Profiles of plasma and heat load at outer target: Midplane density and peak heat load
Ne(m3) ____atouter target Te.Ti(ev) 10qtargelr(MWr:n_z) . i 3 i I B B S R _10
«<——> detach(~12cm) ] | peak Grarget P .
w0rf Jioo °F ! Total heat load ] 2 PS o 18 &
] 6: / neutral load g 2 - . -I E
r radiation load ] - [ O 416 ;
fo af s S - o — 162
] [ & conv. ] — s o - ~
. g g 1 1 %
7 ! peakK grarget; ER 0: - . : : ] % F . E
0 01 02 03 04 05 0 01 02 03 04 05 = L 7 2 a.
Distance from separatrix (m) Distance from separatrix (m) L -
. . . OE 1 1 1 10
He concentration (ny./n;) in divertor 10g —_
o\ sdEes 00 ] Mmemiee " Inner SOL )
-~ 8 b outer SOL 8 e ]
= s Edge @ ® h
£ °F (arr=0.96-0.98) o o .
) - !
> 4f o ]
2:' Nnye/n; at SOL is near separatrix
0- 2 P TP TP TP
0 50 100 150 200

Total injected particle flux (Pam3s-1)



i 7 Effect of reducing diffusion coefficients on He exhaust
Pevopy -15-

He concentration result in the detached divertor for EU DEMO using SOLPS-ITER:
* C, .59 =n,, cd8e/n edee ~20% was beyond acceptable limit of fuel dilution.

SONIC simulation for JA DEMO divertor:
Diffusion coefficients were reduced to half values (7:0.5, D:0.15 m?s).
* Detachment width decreased and peak q,,,,.; Was increased from 5.5 to 7.8 MWm™,
* Cy.atinner, outer SOLs and Xp were enhanced to 10-14%, 9-11% and 18%, respectively.
* C,.%%¢is increased from 4-7% to 7-9%, which is larger than 7,./1,~5%,

but still acceptable level (below the design value: n,./n,~7%).

He profile in EU DEMO edge He concentration (ny./n;) in JA DEMO divertor
Nye/N; ~20%, ny./n. ~14%
He{, In b e/ e ’ zem  Xie :1M2/s DiHe:0.3m2/s — X|e O 5m2/s DiHe:0. 15m2/s
3510 e T o [ .

s E|oCtrons
s )

—l:xAr 4}
o | &D: \ SOL z/D = ,
= =0.2m’/$4,048/042 m?/s |
K ] \ -5

OMP coordinate (m) -6 — ! J ‘
F. Subba, et al., Nucl. Fusion 61 (2021) 106013 Rim 6 7 8 R(m) 6 - 5

= NWHOON®»O




i Progress summary: He exhaust simulations for JA-DEMO
_16-
e Larger exhaust power (P,.,~250 MW), lower SOL density (n.**” =2-3x10*°m~) than ITER.

=He ion flux equivalent to P ., =1.5GW was exhausted from edge (r/a~0.95), and He
densities in the divertor and edge were evaluated with enhancing the detachment.

TR
DEMO DESIGN
................

e With increasing detachment width by increasing gas puff rate (but same f,,,4V~0.8),
accumulation of He ion was not seen in the plasma edge: (n,./np)¢%¢~4-7%.

 Reduction of diffusion coefficients to half values increased (n,,./ny)¢%¢ to 7-9%, which
is still acceptable, but further increase should be avoided.

= Further reduction of edge y to 0.2-0.3 m?s! (D =0.2 is similar now) is planed.
= Divertor geometry effect (such as dome size) and requirements of pumping
speed/divertor pressure will be evaluated.

Recent progresses of modelling to evaluate influences under the DEMO condition:

- Kinetic models (thermal force on impurity transport and flux limiter for ion conduction) for
low collisionality SOL in DEMO were developed

- Elastic collision model of D-D, D-D2, D2-D2, D-He was incorporated, and during improvement.

Future activities :

e Benchmark of SONIC and SOLPS-ITER codes both for EU- and JA-DEMOs (BA DDA).
e Integration of transport codes, SONIC and TOPICS (main plasma), is in progress.

e Renewing SOLDOR to incorporate drifts is considered.



1 Profiles of He ion density in divertor and plasma edge
He ion density in divertor and plasma edge:
-He ion density (ny,) is significantly increased near the detachment front (between

Ar radiation peak and D ionization front) due to recycling in the divertor.
" ny.is increased also near X-point (similar to D* density) .

" ny.~1x10'8 m3 inside the separatrix (r"“/a=0.96-0.98):
n,"4is 25% larger than n™d due to Ar and He ions (similar contributions to An_m9),

Plasma profiles at outer midplane

| He ion density profile
- : (keV) (101°m3)  Pge:236MW

Z(m)

| at midplane

I
2.1x10"°

-2 -1 0 1 2 3
Elastic collision of He+‘D+, He**-D* are not included Distance from Separatrix (Cm)

TT \I11)




% Plasma detachment and D°/D, pressure in divertor
= " \Wider reflector angle: plasma detachment and neutral pressure were similar

DEMO DESIGN

JOINT SPECIAL TEAM

Gas puff 5.3x10%2D/s and Ar seeding: 3.9x10%°Ar/s,
f*1ad™ = (Prag®®'+P2q™")/Pse,=0.78 (0.04 for He radiation)

Inner target: Full detachment (7, ~1eV)
Outer target: Partial detachment (T, ~1eV in r<12 cm) i

‘Al

Pp, and Py, are comparable at exhaust slots.
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10 31 107F il i
= L , S = D2-D2 etc. are not considered.
0 01 02 03 04 05




¥ Distribution of He atom density in detachment
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Nheo/ N> iN the divertor is also 4-6%, similar to that at the plasma edge

* Neutral pressure (Pp,+Ppg) in the divertor is increased with gas puff rate.
Note: for large throughput cases, exhaust flux is smaller than total injected D flux.

Total injected particle flux (Pam3s-1)

He atom density (n,,.) in the divertor: 5.|5 SO .
. . . . [ FDOTFD2
" Ny increases downstream of the ionization front. 4} ;
" n,.pand np, are relatively uniform in the divertor :
= Nyo/Np, is 4-6%: similar to that at the plasma edge.3:' ¢ ;
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