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Motivation for Negative Triangularity (NT)

Camenen et al. PPCF 47 (2005).
Austin et al. PRL 122 (2019).

“H-mode like confinement in L-mode”

« NT DEMO could have the following benefits:

1. Improves energy confinement
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2. Increases the L-H power threshold,
thereby keeping the plasma in L-mode
and avoiding ELMs

3. Improves divertor power handling (i.e.
L-mode-like SOL width, larger major
radial location)
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Outline

J. Ball, et al., PPCF 65 014004 (2023).

Using JFRS-1 resources, we performed gyrokinetic simulations using GENE
to study the following topics:

1. Understanding why NT is beneficial, via its dependence on aspect
ratio

2. Extrapolating behavior to a NT DEMO power plant, using a novel flux
tube domain with non-uniform magnetic shear to include profile shearing



Physical understanding of NT,
via its aspect ratio dependence
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G. Rewoldt, et al. Phys. Fluids 25

Traditional theoretical argument Ohkaa. GA-AT9154

A. Marinoni, et al., PPCF 51

G. Merlo, et al., PPCF 57

G. Merlo, et al., Phys. Plasmas 26

A. Marinoni, et al., Rev. Mod. Phys. 5

 Traditional theoretical argument is based on trapped particle stability:

2019).
2021).
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* NT improves trapped particles’ access to the good curvature region

- Intuitively, NT should be most beneficial for Trapped Electron Mode (TEM)
turbulence and in spherical tokamaks (which have more trapped particles)
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We find the exact opposite!”
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« For spherical tokamaks, NT can harm confinement (at least when the
turbulence is dominated by the Trapped Electron Mode)
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—stablishing the physical mechanism behind NT
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- Restarted from the basics and focused the simplest case:
large aspect ratio, pure lon Temperature Gradient (ITG)
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Physical mechanism behind NT at large aspect ratio

Biglari et al. Phys. Fluids B 1 (1989).
M. Beer PhD Thesis (1995).

. Turbulence in tokamaks arises VT VB
from a destabilization of drift D — <«
waves lon accum. I ®B

- Drift waves travel with a velocity: Cooler l Di
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- Adding V B and curvature can
destabilize the drift waves,
through the ion magnetic drift
velocity:

v, T,B X VB

* For growth these velocities

Cooler
must be similar v, ~ v../4 '
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Testing our hypothesis

Biglari et al. Phys. Fluids B 1 (1989).
M. Beer PhD Thesis (1995).

« The plasma shape usually enters | | | | | | |
into the gyrokinetic model in —NT
many places 1 —PT |

* In the large aspect ratio limit,
only FLR effects and magnetic
drifts distinguish different shapes

Magnetic drift velocity

- Artificially swapping FLR effects
between PT and NT simulations YR Y
reveals that they have little 2T S . R
impact on the linear growth rate Poloidal angle

- Thus, the magnetic drifts appear most important, but is our physical
picture correct?
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Artificially modifying the magnetic drift velocity

- Modify poloidal variation of the magnetic drift velocity and its value at the
outboard midplane

NT
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Artificially modifying the magnetic drift velocity

- Fastest growth occurs when v, = v./4 with minimal poloidal variation
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Change temperature gradient

- Changing the temperature gradient alters the drift wave velocity, thereby
changing the ideal magnetic drift velocity
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Applying physical picture to other geometries

« Can also be used to explain the results of other geometrical scans at large
aspect ratio (e.g. dependence on elongation and magnetic shear)

Magnetic drift velocity

NT heat flux / PT heat flux
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Conclusions and future work

- At standard and large aspect ratio, NT generally improves confinement (which
Is consistent with experiment)

* In spherical tokamaks, NT may have worse confinement (in certain turbulence
regimes), which can be studied in the new SMART tokamak

- The confinement improvement from NT for ITG turbulence at large aspect ratio
can be explained by a better matching between the drift wave velocity and
magnetic drift velocity

- We expect this physical interpretation still holds for ITG in conventional aspect
ratio and even spherical tokamaks

« We plan to develop an analogous interpretation for TEM turbulence and see
how it applies in spherical tokamaks

14



All done.



Extrapolating to a
NT power plant

J. Ball, et al., PPCF 65 014004 (2023).



E ::L M Swiss
Plasma
Center

Flux tube with non-uniform magnetic shear

J. Ball, et al. PPCF 65 (2023).

- — — standard
non-uniform

Safety factor
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Radial location in flux tube (p;)

- Standard flux tube simulation domain in GENE generalized to include
arbitrary gyroradius-scale variation in the radial profile of the safety factor

* Required changes were systematically derived from the Fokker-Planck

equation in a realistic asymptotic limit
17



=PrL

M Swiss
Plasma
Center

Linear benchmark shows perfect agreement

J. Ball, et al. PPCF 65 (2023).

- Compared modified GENE code to analytic results in the cold ion limit

- GENE always finds the fastest growing mode and the correct growth rate
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Machine size scan

J. Ball, et al. PPCF 65 (2023).

* Increasing the wavelength of the safety factor modulation (at constant
amplitude) can be thought of as a scan in machine size

- — — standard
; non-uniform

Safety factor
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Radial location in flux tube (p;)

+ Thus, this can give useful information to extrapolate from existing devices up

to a NT power plant
19
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Linear machine size scan for NT versus PT

J. Ball, et al. PPCF 65 (2023).
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» Used idealized equilibria holding the background gradients constant

« Linearly, NT scales to a power plant better than PT

20
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Nonlinear machine size scan for NT versus

oT
J. Ball, et al. PPCF 65 (2023).
G. Merlo, et al. PPCF 63 (2021).
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* NT and PT scale similarly to larger devices

- More trustworthy/realistic than linear results

21
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Nonlinear benchmark

J. Ball, et al. PPCF 65 (2023).

» Use non-uniform shear to make two uniform shear regions in one simulation
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Nonlinear benchmark

J. Ball, et al. PPCF 65 (2023).

» Use non-uniform shear to make two uniform shear regions in one simulation

« Since there are no energy sources/sinks, the temperature profile adapts to
ensure the heat flux is the same at all radial locations

<0Ti>y+ (Tipi/Ro)
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Nonlinear benchmark shows excellent agreement

J. Ball, et al. PPCF 65 (2023).

» Use non-uniform shear to make two uniform shear regions in one simulation

« Since there are no energy sources/sinks, the temperature profile adapts to
ensure the heat flux is the same at all radial locations

« Compare flux-gradient relationship with two standard simulations
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