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4Bl Stellarators need to address the power exhaust issue

As tokamaks, stellarators need to address the issue of how to best exhaust heat and particles.
t=190

Goals concerning power exhaust:

% exhaust power without damaging materials

- radiate and spread the heat on target

% maintain core performance N
-> control impurity dilution and ionization/radiation fronts
% allow easy pumping of neutrals

- maximize neutral pressure close to target

tokamak with a single null



4l Braginskii equations adequate in the boundary region

Braginskii [Reviews of Plasma Physics, 1965] derived, starting from kinetic theory, a set of fluid equations that is

asymptotically valid in the limit of high plasma collisionality (v* >> 1) and thus adequate in the ‘cold boundary’.

continuity % -+ V- (nava) —( ~ viscosity ~ resistivity
daVa
momentum MMy Nyg, 7 = —Vpo, — V-7, +eanq (E+V,xB)+ R,
3 d 1, :
enersy ina dt — _paV ) Va -V 4. -+ ngsc + Qa

. ~ heat conductivity
... + Maxwell equations

Braginskii equations describe the plasma dynamics on time scales ranging from (2,1 ~ 10 suptot. ~ 1s.
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=PFL Drift-reduced Braginskii equations still adequate

Zeiler [IPP report 5/88, 1999] derived, starting from Braginskii equations, a reduced set of equations valid in the

limit of “low-frequency” (w << (1) and “large scale” turbulence ( (k, p.)?’<< 1) thus adequate in the boundary.

For example, in the cold ion (T;= 0) electrostatic limit (0,B=0):
on

~ drive for curvature-driven modes

electron continuity 5 =_V- [n(VE + Ve + V||eb)] ,
t
en d. 0 ~ destabilizes drift-waves

charge conservation V- (chz dzt qub) =V i — V- (enVa), /

deOV|e . 2
electron momentum MeN i —Vpe + enV ¢ — 0.71n.V T, + encv)j — gVIIGe

d;oViji
ion momentum m;n Slt” = —V)pe ,

3 d.T, onT,

electron energy gMe g = —p.V -V, 4+ 0. 71—V||J|| + X||6V”T + V- ( ni, b x VT,)

Zeiler report can be found here: https://hdl.handle.net/11858/00-001M-0000-0027-602C-C
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=Pr-L GBS solves the drift-reduced Braginskii equations

The Global Braginskii Solver (GBS) [Giacomin, JCP 2022] developed over the last ~ 15 years:

* solves Zeiler’s equations in a toroidal domain of rectangular cross-section,

e given an equilibrium B, 2D or 3D, with arbitrary magnetic topology [Coelho et al, NF 2022],
» given density and temperature sources,

* with sheath boundary conditions [Loizu et al, PoP 2012],

* with coupling to a kinetic neutral model [Mancini et al, NF 2024].

Quasi-steady state = balance between source, turbulence, sheath losses

Cross-validation of turbulence codes (GBS, GRILLIX, TOKAM3X) with experiments on

TCV has been carried out [Oliveira et al, NF 2022]. GBS simulation of TCV shot #65402 @1s
[M. Giacomin, PhD thesis 2022] 6



T o3l Successful stellarator simulations on JFRS-1 since 2022

GBS numerical scheme includes:

Explicit time-advance using Runge-Kutta fourth-order scheme,

Spatial derivatives evaluated with fourth-order finite difference scheme,
Arakawa scheme for the Poisson brackets (ExB advection),

Density and velocity grids are staggered in two directions,

MPI parallelization in (x,y,z) with z the ‘toroidal direction’.

Typical stellararator simulation on JFRS-1:

Grid size (n,, n,, n,) ~ (200)% ,

1 node per few (x,y) planes, total of ~ 40 nodes,

[Coelho et al, NF 2022]

Simulation time ~ 50’000 node-hours.




4Bl We constructed a stellarator with an island divertor

A stellarator vacuum field can be described by a potential satisfying Lapace’s equation.
VxB =0 B =VV
V-B=20 ViV =0 ' : low shear,

{ = 0.5-0.55
01} ;

V(R, Qb, Z) = ¢ + Z Vm,l (R, Qb, Z) %65 09 oes 1 105 11 s
m,l

Dommasck potentials [Dommaschk, CPC 1986] form complete basis for the vacuum solution in a torus.



3Bl We shape the wall so that islands intersect top/bottom
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S4Bl Heat and density sources localized close to the edge
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= ~1= Ml First simulation of a stellarator with an island divertor

density

[Coelho et al, NF 2022] 11



S 4ol Time-averaged profiles consistent with “magnetic cage”
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= o4l Time-averaged profiles consistent with “magnetic cage”
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“PFL Divertor target power footprint as expected

pressure (pg)t 6

1000 f
* The heat deposition pattern on the targets is 5
500 f \ 1 B

as expected from the footprints of the islands.
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m = 4,n = 2 mode with k, ps ~ k,ps ~ 0.04 dominates dynamics
mode retrieved with nonlocal linear theory [Coelho et al, NF 2022]
highlights importance of geodesic curvature:
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mode breaks the discrete symmetry of the stellarator! [Coelho et al, submitted to NF] 1
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103}

——experiment (shot #6736)

- = =(kyps)
simulation
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density power spectrum (a.u.)

104 :
107 10°
kypsﬂ

Used GBS code to simulate plasma dynamics in TJ-K with real sources.
Model valid in whole device (except no neutral physics included).

Reproduced the fluctuations spectrum, dominant m=4,n=1 mode.
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Differences between tokamak/stellarator simulations

might be explained by magnetic shear
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Could the difference mainly come from
linear estimate: k, ~ = < k, I / f

different magnetic shear?

[Ricci et al, PRL 2008] 17



S4Bl Numerical experiment confirms importance of shear

150 low shear [Tecchiolli et al, in preparation]
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=Pr-L Currently simulating an LHD-like configuration

X/

*» LHD has high-shear, high ellipticity, small torsion: what is the nature of boundary turbulence?

®,

< We might be able to reproduce soft density limits as observed experimentally.

X/

** Including the neutral physics in the simulations might allow studying detachment.

150 150 g
8
100 100 o
50 50 6
<
i & 5
QL S 0
S N s
-50 -50 3
-100 -100 2
. . . 1
LHD simulation box and field 150 -150
50 0 &0 20

R/pso



“PFL Summary

GBS is the first code to carry out a global simulation of boundary fluid turbulence in a stellarator.
Low-m coherent modes that break stellarator periodicity tend to develop, at least in low-shear.

We have reproduced the fluctuation spectrum in the TJ-K stellarator experiment.
We have explored the effect of global shear, axis-torsion, and near-axis-ellipticity on turbulence.

We are currently simulating realistic large-scale configurations such as LHD, but also W7-AS.
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