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Foreword: Only a small fraction of all activities (and co-authors)
- The various teams

- Overview of main activities

- Neural-Parareal

- Foundation Models
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- The various teams
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The Al-ML-Viz Team O
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The UKAEA Computing Division )

UK Atomic
Energy
Authority COMPUTING DIVISION
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The UK Fusion Computing Lab
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STEP: Spherical Tokamak For Energy Production

STEP: Deliver energy to the grid by 2040
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Tokamak Design is an Al & Exascale Challenge (@)

Cannot build 20 demonstration power plants

=> Exascale and Al is needed to design & optimise STEP and future fusion power plants
- complex engineering
- in-silico design optimization
- model-based predictions with large uncertainty

TOKAMAK

&PLANT SYSTEMS
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- Overview of main activities
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Al activities at UKAEA: MTM stability Surrogates for Integrated Models )

Will Hornsby, in collaboration with Digilab Itd
Using Gaussian Processes to emulate MTM stability with GS2
W.Hornsby et al., Phys. Plasmas 31, 012303 (2024)
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Expeected currmlative distribution

{a) Growth Rate.

Expesctied cumulative distribution

(b) Mode Frequency.

Expeected cumulative distribution

(¢) Electron Heat Flur.
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Nico Amorisco (UKAEA)
Steve Etches (UKAEA)

Emily Lewis (UCL PhD)

Omar El-Zobaidi (Placement)

11

N.Amorisco et al., “FreeGSNKE: A Python-based dynamic free-boundary
toroidal plasma equilibrium solver”, Phys. Plasmas 31, 042517 (2024)

Results FNN CNN semiPINN

Pulse number 99113 timestep:63.7s
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Emily Lewis, PhD at UCL:
Surrogate of plasma equilibrium
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Al activities at UKAEA: Active Learning & Optimisation
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Lorenzo Zanisi (UKAEA)
Enrico Crovini (Imperial PhD)
Theo Brown (UCL PhD)

Catherine Siddle (Grad-Scheme) Regressor: gj,ir6 Classifier
0.984
' 0.964
0.964
= 0.94
a
| —— trained on 1 flux
0.92+ —— trained on 5 fluxes
Random

Active Learning for Qualikiz, L. Zanisi et al 2024 Nucl. Fusion 64 036022

E.Crovini et al. “Automatic JOREK calibration via batch Bayesian
optimization”, Physics of Plasmas 31, 063901 (2024)
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Al activities at UKAEA: Advanced Visualisation & Al
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Nitesh Bhatia (UKAEA)
Ekin Ozturk (Imperial PhD)
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Al activities at UKAEA: Advanced Visualisation & Al (@)

Nitesh Bhatia (UKAEA)
Ekin Ozturk (Imperial PhD)
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Al activities at UKAEA: Advanced Visualisation & Al (@)

Nitesh Bhatia (UKAEA)
Ekin Ozturk (Imperial PhD)

S.Pamela | 5th IFERC Workshop GPU Fusion | 20 June 2024 | Page 17



Al activities at UKAEA: Advanced Visualisation & Al (@)

Nitesh Bhatia (UKAEA)
Ekin Ozturk (Imperial PhD)
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Al activities at UKAEA: Neural Operators & PINNs
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Vignesh Gopakumar (UKAEA)
Naomi Carey (UKAEA Apprenticeship)
Daniel Brennand (UKAEA Apprenticeship)
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V.Gopakumar et al. 2024 Nucl. Fusion 64 056025
N.Carey et al., IAEA-FEC 2023
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Al activities at UKAEA: Foundation Models
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Samuel Jackson (UKAEA)
Vignesh Gopakumar (UKAEA)
Naomi Carey (UKAEA Apprenticeship)
Lorenzo Zanisi (UKAEA)
Nathan Cummings (UKAEA)
Johannes Brandstetter (JKU)

Main collaborations:
e Linz
* Turing Institute
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- Neural-Parareal
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Neural-Parareal: Basics of Parareal
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Split time domain into Pa rallel windows [ J.-L. Lions et al., Comptes Rendus de I'Académie des Sciences, Série I. 332 (7): 661-668 (2015) |
fast approximation with Coarse-Solver
correction using Fine-Solver

a Parareal Algorithm

Cyclei, =0
F(t}  =full solution i

Glo,;, =coarsesolver
0——"/
t, t, t, t; t, ts
time

Neural-Parareal, S.Pamela (submitted to CPC) https://arxiv.org/abs/2405.01355 S.Pamela | 5th IFERC Workshop GPU Fusion | 20 June 2024 | Page 22
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Neural-Parareal: Basics of Parareal
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Basics of Parareal: split time domain into parallel windows
fast approximation with Coarse-Solver
correction using Fine-Solver
better coarse solver => few iterations => high speedup

MPI MPI MPI MPI MPI

=
i
—=
—a

Neural-Parareal, S.Pamela (submitted to CPC) https://arxiv.org/abs/2405.01355 S.Pamela | 5th IFERC Workshop GPU Fusion | 20 June 2024 | Page 23
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Neural-Parareal: Parareal with a Neural Operator
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Basics of Parareal: split time domain into parallel windows
fast approximation with Coarse-Solver
correction using Fine-Solver
better coarse solver => few iterations => high speedup
=> use Machine Learning surrogates

Top: ground truth
Bottom: neural PDE solver

Normalised Density p

Neural-Parareal, S.Pamela (submitted to CPC) https://arxiv.org/abs/2405.01355 S.Pamela | 5th IFERC Workshop GPU Fusion | 20 June 2024 | Page 24
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Neural-Parareal: JOREK Demonstration
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JOREK: non-linear MHD solver for tokamak plasmas [ jorek.eu ]
Comes with simplified models (basically NS in toroidal geometry, and Hasegawa-Wakatani)
Full simulations address things like plasma-edge filamentation, or disruption (loss of plasma control)

. 0.1

Neural-Parareal, S.Pamela (submitted to CPC) https://arxiv.org/abs/2405.01355 S.Pamela | 5th IFERC Workshop GPU Fusion | 20 June 2024 | Page 25
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Neural-Parareal: Reduced Models in JOREK
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Blobs with 3-variables model (Navier Stokes in torus) a
 p, T, ® (stream function) g
* Plus 1 auxiliary variable: vorticity w = V2@ é
Radially motion due to Vp and toroidal geometry 2
Hotter blobs move faster £
2
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Neural-Parareal, S.Pamela (submitted to CPC) https://arxiv.org/abs/2405.01355 S.Pamela | 5th IFERC Workshop GPU Fusion | 20 June 2024 | Page 26




Neural-Parareal: Reduced Models in JOREK ()

Top: electrostatic model

Blobs with Reduced-MHD model Bottom: electromagnetic model (RMHD)

Used extensively for fusion
* 4variables: p, T, @, ¢ (magnetic potential)
* Plus 2 auxiliary variables:
* Vorticity w = V2@
* Currentj=VZ
Effectively 6 variables
Behaviour is quite different

Normalised Density p

Neural-Parareal, S.Pamela (submitted to CPC) https://arxiv.org/abs/2405.01355 S.Pamela | 5th IFERC Workshop GPU Fusion | 20 June 2024 | Page 27




Neural-Parareal: Reduced Models in JOREK ()
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Neural-Parareal, S.Pamela (submitted to CPC) https://arxiv.org/abs/2405.01355 S.Pamela | 5th IFERC Workshop GPU Fusion | 20 June 2024 | Page 28

Blobs with Reduced-MHD model
Used extensively for fusion
* 4variables: p, T, @, ¢ (magnetic potential)
* Plus 2 auxiliary variables:
* Vorticity w = V2@
* Currentj=VZ
Effectively 6 variables

Behaviour is quite different
=> Blobs create their own internal current

=> which in turn affects velocity

Normalised Density p

Current j




Neural-Parareal: Predictor-Corrector with JOREK ®)

i F(;)

In theory, Parareal is “non-intrusive” o(r)
. . . - - i ° L"/”

In practice, it requires a lot of work with the code’s i/o

For FEM code, even more complex due to projection between resolutions

in 3

Gaussian
integration
mesh for fine- FEM
solver FEM grid predictor-corrector projection
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mesh
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Neural-Parareal: Parareal with a Neural Operator

Except that a Neural PDE solver requires several input timesteps
=> Need to apply the predictor-corrector to many timesteps
=> Even more i/o
=> Projections are costly => needs to be parallelised (otherwise can easily dominate workflow)
=> end up with a lot of extra data!

u(t)

Neural-Parareal, S.Pamela (submitted to CPC) https://arxiv.org/abs/2405.01355 S.Pamela | 5th IFERC Workshop GPU Fusion | 20 June 2024 | Page 30




\
Zz

Neural-Parareal: Parareal Demonstration

()
!
Top: ground truth
It works! Bottom: Parareal evolution (last timestep)

Looking at difference of last timestep with ground truth
(top is ground truth, bottom is parareal evolution)

Neural-Parareal, S.Pamela (submitted to CPC) https://arxiv.org/abs/2405.01355 S.Pamela | 5th IFERC Workshop GPU Fusion | 20 June 2024 | Page 31
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Neural-Parareal: SSIM Measure /\i %)
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Top: Parareal evolution (last time-step)

Using SSIM (Structural Similarity Index Measure) Bottom: Corresponding SSIM evolution

Better than MSE for generic structures of blobs
“SSIM = 1” means 100% accuracy

No matter how bad your coarse solver, Parareal will
always converge to SSIM=1 at final iteration

1.0 -

a .

SSIM of final state for density
e © © © o
n N

e
S

1] 10 20 30 40
Parareal Cycles

Neural-Parareal, S.Pamela (submitted to CPC) https://arxiv.org/abs/2405.01355 S.Pamela | 5th IFERC Workshop GPU Fusion | 20 June 2024 | Page 32
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Neural-Parareal: Neural vs. Traditional Coarse Solver
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“fake” coarse solver == JOREK itself, but with controlled difference
* Exactly same physics model
* Lower spatial resolution (half)
* Higher diffusion
=> Diff x 30 is a bad coarse solver
=> Diff x 3 is a good coarse solver

=
(<)

o
0

Neural Coarse solver gives better performance than Diff x 3
=> it works really well

o
o

o
'S

- Neural coarse-solver
Fake coarse-solver Diff x3

SSIM of final state for density

0.2 - Fake coarse-solver Diff x5
- Fake coarse-solver Diff x10
- Fake coarse-solver Diff x30
0.0 T T T ,
0 10 20 30 40

Parareal Cycles

Neural-Parareal, S.Pamela (submitted to CPC) https://arxiv.org/abs/2405.01355 S.Pamela | 5th IFERC Workshop GPU Fusion | 20 June 2024 | Page 33
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Neural-Parareal: Self-improving Framework
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Since Parareal simulations produce a lot of data, train NN as we launch more simulations
Neural-Parareal
training Parareal Coarse-Solvers
in-the-loop with neural PDE solvers
next batch with
initial dataset ) ffull/ °Pt'""sem Neural-Parareal
. train neural solver dataset .
R o N - '" AR EEEEEREE Sy o 5 - ""
“ e | first NN training PRt <:I o e |
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Neural-Parareal, S.Pamela (submitted to CPC) https://arxiv.org/abs/2405.01355 S.Pamela | 5th IFERC Workshop GPU Fusion | 20 June 2024 | Page 34




Neural-Parareal: Main Result

Ran 5 batches of 20 simulations
Speed-up increases significantly and quickly

100

Speedup Efficiency [%]

Neural-Parareal, S.Pamela (submitted to CPC) https://arxiv.org/abs/2405.01355 S.Pamela | 5th IFERC Workshop GPU Fusion | 20 June 2024 | Page 35

Speedup efficiency with an SSIM
requirement of 0.7
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GPU usage and scale

Moving away from CPU simulations

=> Many fusion codes still require CPU’s
=> Need to move towards GPU codes (NekRS, CGYRO, XGC, OpenMC()
=> Strong collaboration with US-NL (Exascale Computing Project ECP)

Andy Davis & Nitesh Bhatia
NekRS running on Frontier

Parallel Computing 1

14 (2022) 102982

Contents lists available at ScienceDirect LG%
Parallel Computing
journal 1
NekRS, a GPU-accelerated spectral element Navier-Stokes solver -

Paul Fischer *", Stefan Kerkemeier *, Misun Min **, Yu-Hsiang Lan **, Malachi Phillips®,

Thilina Rathnayake *, Elia Merzari *, Ananias Tomboulides **, Ali Karakus ', Noel Chalmers ¥,

Tim Warburton "

* Mahemarics and Computer Science, Argonne National Labaratary, Lemonr, 1L 60439, United Sutes of America
* Department of Computer Sclence, Universty o Hinots at Urbare- Urbane, 1L 61801, United Stes
* Department of Mechanical Science

Penn Swae, PA 16802 United States
* Department ym«mm Inghumbg Afevde Ushory of Tosmmienk, 14134 s
" Mechonteal Engincering Depariment, Middle East Technical University, 06800, Ankara,
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ARTICLE INFO ABSTRACT

Spectral element method
Incompressible Navier-Stokes
Exascale applications

1. Introduction

A fundamental challenge in fluid mechanics and heat transfer is o
aceurately simulate physical interactions over a large range of spatial
and temporal scales, Such simulations can involve billions of degrees of
freedom evolved over hundreds of thousands of timesteps. Simulation
campaigas for these problems can require weeks or months of wall-
clock time on the world's fastest supercomputers. One of the principal
objectives of high-performance computing (HPC) is to reduce these
run-times to manageable levels.

We are interested in modeling turbulent flows using either direct
numerical simulation (DNS) to capture all scales of motions, large
eddy simulation (LES) to capture the modes that dominate momentum
and thermal transport, or Reynolds-averaged Navier-Stokes (RANS)
formulations that emulate both small- and large-scale transport with
closure models. Applications include reactor thermal hydraulics, inter-
nal combustion engines, ocean and atmospheric flows, vascular flows,
astrophysical problems, and basic turbulence questions for theory and

* Comesponding authar.
Email address: e

@mes.anlgov (M. Min).
https://dol.org/10, 1016/} pareo, 2022.102962

Available online 18 October 2022

Keywirds: of NekBS, a hermal fluids simulation code based on the spectral clement
NekiS bt (SEM) is described. For performance porability, the code is based on the open concurrent compute
Neks000

abstraction and leverages scalable developments in the SEM code Nek5000 and in libParanumal, which

Jhwscomet is a library of high-performance kernels for high-order discretizations and PDE-based miniapps. Critical
= performance sections of the Navier-Stokes time advancement are addressed. Performance results on several
Scalability platforms are presented, including scaling to 27,648 V1005 on OLCF Summi, for calculations of up o 608
Pertormance grid points (2408 degrees-of-freedom).

‘model development. Simulations in these areas present significant chal-
lenges with 1 to scal tion, d complex com-
putational domains. In many cases, experimental data are eupemwe
or impossible to obtain, making simulation on leadership computing
platforms critical to informed analysis.

With current exascale computing programs in the U.S. and else-
where developing GPU-based HPC platforms it is imperative to exploit
the performance potential of these powerful node architectures. In this
paper, we describe the development of a new open-source code for
thermal-fluid analysis, NekRS [1], which has emerged out of twe HPC
software projects and which is designed to be performant for both GPU-
and CPU-based platforms.

NekS000 [2) was one of the first production.level single program
multiple-data (SPMD) codes deployed on distributed- memory parallel
computers [3]. It has demonstrated scalability to leading-edge plat-
forms through the SPMD era [4,5] and readily scales to millions of

Received 9 December 2020; Received in revised form 3 August 2022; Accepted 6 October 2022

0167-8191/© 2022 Argonne National Laboratory and The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://ereativecommons.org/licenses/by-ne-nd/4.0/).
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GPU usage and scale

Moving away from CPU simulations
=> Many fusion codes still require CPU’s

=> Need to move towards GPU codes (NekRS, CGYRO, XGC, OpenMC()
=> Strong collaboration with US-NL (Exascale Computing Project ECP)

Transformers and Foundation models
=> Most ML workflows are not GPU intensive

=> Transformers are

=> In visit at Linz (JKU) this week to learn from world experts
=> Collaborations with JKU, Turing Institute, IBM, IAEA
=> Strength of Transformers: they scale very well on GPUs
=> Challenge of Transformers: data-hungry
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AURORA: A FOUNDATION MODEL OF THE ATMOSPHERE

Cristian Bodnar" ', Wessel P. Bruinsma® ', Ana Lucic™ ', Megan Stanley " !,

Johannes Brandstetter* !, Patrick Garvan', Maik Riechert', Jonathan Weyn’, Haiyu Dong’,
Anna Vaughan®, Jayesh K. Gupta® !, Kit Tambiratnam’, Alex Archibald®, Elizabeth Heider!,
Max Welling® ', Richard E. Turner'-*, and Paris Perdikaris'

' Microsoft Research Al for Science
*Microsoft Corporation 'JKU Linz *University of Cambridge *Poly Corporation ®University of Amsterdam

“Equal contribution ''Work done while at Microsoft Research

ABSTRACT
Deep learning foundation models are revolutionizing many facets of science by leveraging vast
amounts of data to leam general-purpose representations that can be adapted to tackle diverse
downstream tasks. Foundation models hold the promise (o also transform our ability o model our
planet and its subsystems by exploiting the vast expanse of Earth system data. Here we introduce
Aurora, a large-scale foundation model of the atmosphere trained on over a million hours of diverse
weather and climate data. Aurora leverages the strengths of the foundation modelling approach to
produce operational forecasts for a wide variety of atmospheric prediction problems, including those
with limited training data, heterogeneous variables, and extreme events. In under a minute, Aurora
produces S-day global air pollution predictions and 10-day high-resolution weather forecasts that
outperform state-of-the-art classical simulation tools and the best specialized deep learning models.
‘Taken together, these results indicate that foundation models can transform environmental forecasting.

1 Introduction

Deep learning foundation models have revolutionised various scientific domains, such as protein structure prediction
(Abramson et al., 2024), drug discovery (Chithrananda et al., 2020), computer vision (Betker et al., 2023), and natural
language processing (OpenAl, 2024). The key tenets of foundation models include pretraining, where a single
large-scale neural network learns to capture intricate patterns and structure from a large corpus of diverse data; and
fine-tuning, which allows the model to leverage its learned representations to excel at new tasks with limited training
data (Bommasani et al., 2021; Brown et al., 2020).

d network of such as the oceans, land, and ice,
which constantly interact in intri In a rapidly changing climate, accurate understanding of these subsystems.
becomes increasingly important. We envision that foundation models can revolutionise our ability to model subsystems
of the Earth, and eventually the whole Earth.

The Earth system is a complex and i

Amongst the Earth’s the stands out as data-rich ( et al., 2019; Baver
ctal., 2015) and therefore ripe ground for pretraining a model. Classical atmospheric simulation
approaches, such as numerical weather prediction (NWP), are costly and unable to exploit this wealth of data (Bauer
et al., 2015). Recent deep learning approaches are cheaper, more flexible, and have shown greal promise in specific
prediction tasks with abundant training data (Lam et al., 2023; Bi et al., 2023; Chen et al., 2023a,b; Han et al., 2024;
Kochkov et al., 2024; Lessig et al., 2023; Pathak et al., 2022; Bonev et al., 2023; Andrychowicz et al., 2023; Ham et al.,
2019; Nguyen et al., 2023a,b). However, these methods struggle when atmospheric training data are scarce (Chantry
et al., 2021) or heterogeneous (Reichstein et al., 2019), and they lack robustness in predicting extremes (Charlton-Perez
et al., 2024). By leaning generalizable representations from vast amounts of diverse data, foundation models have been
able to overcome analogous challenges in other domains (Zhai et al., 2022; Radford et al., 2021; Bommasani et al.,
2021; Nguyen et al,, 2023a).
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GPU usage and scale
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* Moving away from CPU simulations
=> Many fusion codes still require CPU’s
=> Need to move towards GPU codes (NekRS, CGYRO, XGC, OpenMC(C)
=> Strong collaboration with US-NL (Exascale Computing Project ECP)

* Transformers and Foundation models
=> Most ML workflows are not GPU intensive
=> Transformers are
=> In visit at Linz (JKU) this week to learn from world experts
=> Collaborations with JKU, Turing Institute, IBM, IAEA
=> Strength of Transformers: they scale very well on GPUs
=> Challenge of Transformers: data-hungry

e Several GPU clusters => portability is key
* Leonardo (CINECA) Nvidia
* (CSD3 (Cambridge) Nvidia
* Dawn (Cambridge) Intel
* Isembard-Al (Bristol) Nvidia
* LUMI (Finland) AMD

* Frontier (USA) AMD
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Conclusion

* Al & Machine Learning at UKAEA has ramped up over last 3 years

» Several projects running in collaboration with internal/external partners
* Integration into larger framework (eg. Neural-Parareal, JINTRAC)

* Currently on visit at Linz with Johannes Brandstetter

=> Starting Transformers and Foundation Models
=> will increase GPU usage a lot in near future

Thank you for your attention!
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