
Porting and tuning R5F code on Leonardo

M. YAGI

National Institutes for Quantum Science and Technology (QST)
Rokkasho Institute for Fusion Energy

5th IFERC workshop on the usage of GPU based system for fusion Applications, June 20, 2024

5-field Reduced Drift MHD Model
Model consists of Vorticity equation, Generalized Ohm’s law, Continuity equation,
Parallel momentum equation, Electron temperature evolution equation: 𝑭,𝑨,𝒏,𝒗,𝑻𝒆
It is an extension of 4-field reduced drift MHD model by Hazeltine and Meiss,
Phys. Rep. 121 (1985)1-164.

𝑑
𝑑𝑡 ∇ୄ

ଶ𝐹 െ 𝛿 ∇ୄ𝑝௜;∇ୄ𝐹 ൌ െ∇∥∇ୄଶ𝐴 െ Ω, 𝑝 ൅ 𝜇ୄ௜ ∇ୄସ𝐹

𝑑
𝑑𝑡 𝐴 െ 𝛿ଶ

𝑚௘
𝑚௜

∇ୄଶ𝐴 ൌ െ∇∥ 𝜙 െ 𝛿𝑝௘ ൅ 𝜂∥∇ୄଶ𝐴 െ 4𝜇ୄ௘𝛿ଶ
𝑚௘
𝑚௜

∇ୄସ𝐴

𝑑
𝑑𝑡 𝑛 ൅ 𝛽

𝑑
𝑑𝑡 𝑝 ൌ 𝛽 Ω,𝜙 െ 𝛿𝑝௘ െ 𝛽∇∥ 𝑣 ൅ 𝛿∇ୄଶ𝐴 ൅ 𝜂ୄ𝛽∇ୄଶ𝑝

𝑑
𝑑𝑡 𝑣 ൌ െ∇∥𝑝 ൅ 4𝜇ୄ௜ ∇ୄଶ𝑣

3
2
𝑑𝑇௘
𝑑𝑡 െ

𝛽௘
𝛽
𝑑𝑛
𝑑𝑡 ൌ െ𝛼்𝛿𝛽௘∇∥∇ୄଶ𝐴 ൅ 𝜀ଶ𝜒௘∥∇∥ଶ𝑇௘ ൅ 𝜒௘ୄ∇ୄଶ𝑇௘

𝑑
𝑑𝑡 ൌ

𝜕
𝜕𝑡 ൅ 𝜙, ,∇∥ൌ ∇∥

ሺ଴ሻ െ 𝐴, ,𝐹 ൌ 𝜙 ൅ 𝛿𝑝௜ , 𝛿𝑝௜ ൌ 𝛿௜𝑛, 𝛿𝑝௘ ൌ 𝛿𝑇௘ ൅ 𝛿௘𝑛, 𝛿௜ ൌ
𝛽௜
𝛽 𝛿, 𝛿௘ ൌ

𝛽௘
𝛽 𝛿

Temperature

Density

r

Application of 5-field Reduced MHD Model

Control of particle transport is an important issue for burn-control in ITER and DEMO.

S. Matsuda, NIFS-MEMO-80 (2017)

• Hollow density profile is often seen after pellet injection or
gas-puff.

⇒inversed density gradient appears in the edge region.

Particle pinch mechanism for inverted density gradient
in semi-collisional regime [Miki APTWG ‘ 17]
ITG/TEM stability is investigated for inverted density gradient
in collisionless limit [Du ‘17]

Parallel Numerical Algorithms (1D Domain Decomposition)

Solve

Pseudo-spectral
method

Lapack

FFTW

ZGBSV

𝜕𝑈
𝜕𝑡 ൌ ℒ 𝑈 ൅𝒩 𝑈,𝑈

Linear terms are solved by Crank Nicolson implicit method and
nonlinear terms are solved by Predictor-Corrector scheme.

Cost Evaluation on HPE SGI8600 (NVIDIA V100)

Main Loop

It is found that elapse time for data transfer between CPU and GPU is dominant in FFT area.

FFT library of GPU is faster than that of CPU: cuFFT 0.22sec vs FFTW 9.64 sec.

main
|
|--call STMAIN
|--call ARRAY_SIZE, ARRAY_ALLOCG
|--call STINT
|--call ARRAY_ALLOC
|--call EQUIL
|--call GATHER
| |---call TRNS1_NEW
| |---MPI_SENDRECV
|--call calc_eta(0)
|--call TMMAIN
|--call TMENR(0)

|-- do i=1,100,000,000
| !--FIRST STEP
|--- call calc_eta(1)
|--- call MATRIX
|--- call VECT
|--- call TMRHS
| |--- call TRNS2_NEW
| |--- CALL MPI_ALLGATHER
|--- call TMPUS
|--- call GATHER
| !--- SECOND STEP
|--- call VECT
|--- call TMRHS
|--- call TMPUS
|--- call GATHER
|--- call CLEARM

③ kernels directive

② update directive

① enter data, exit
data directive

!$acc enter data
create(W1C(1:LYMED,1:KZ
MWD,S:E),…)

!$acc exit data delete(W1C,…)

!$acc update
device(DXVOLK_T(S:E,1:ND
M),…)

!$acc host_data
use_device(W1C(1:LYMWD,1:K
ZMWD,S:E),…)

DO L=S1,E1

!$acc data present(&
!$acc W1C(1:LYMWD,1:KZMWD,S:E), W2C(1:LYMWD,1:KZMWD,S:E),W3C(1:LYMWD,1:KZMWD,S:E),W4C(1:LYMWD,1:KZMWD,S:E), &
…
DO L=S1,E1
DO I=1,IRMAXM
VOLRHS(I,L)=0.0D0
…
END DO
END DO
IF(IST ==0) THEN
istat = cufftPlan2d(cuplan(1), KZMWD, KYMWD, CUFFT_Z2D)
…
IST=1
if (myid.eq.0) write(*,*) 'time fft_plan:', MPI_WTIME() - t0 ! okada
END IF
!$acc kernels
!$acc loop collapse(3)
DO I=S,E
DO N=1,KZMWD
DO M=1,LYMWD
W1C(M,N,I) = (0.0D0,0.0D0)
…
END DO
END DO
END DO
!$acc loop independent private(IY,IZ) collapse(2)
DO I=S,E
DO L=1,NDM
IY=IPY(L)
IZ=IPZ(L)
W1C(IY,IZ) = DXVOLK_T(I,L)

…
END DO
END DO
!$acc end kernels

Modified subroutine TMRHS

Execution on GPU

!$acc host_data
use_device(W1C(1:LYMWD,1:KZMWD,S:E),W2C(1:LYMWD,1:KZMWD,S:E),W3C(1:LYMWD,1:KZMWD,S:E),W4C(1:LYMWD,1:KZMWD,S:E),&
…
DO I=S,E

istat = cufftExecZ2D(cuplan(1), W1C(1,1,I), W1R(1,1,I))
…
END DO
!$acc end host_data
!$acc kernels
!$acc loop
DO I=S,E
DO N=1,KZMWD
DO M=1,KYMWD
DXVOL_T(M,N,I) = W1R(M,N)

…
END DO

END DO
END DO
!$acc loop collapse(3)
DO I=S,E
DO N=1, KZMWD
DO M=1,KYMWD

VOLNON_T(M,N,I) = &
-DXPHI_T(M,N,I)*DYVOL_T(M,N,I)+DYPHI_T(M,N,I)*DXVOL_T(M,N,I) &
+DXPSI_T(M,N,I)*DYCUR_T(M,N,I)-DYPSI_T(M,N,I)*DXCUR_T(M,N,I)
…

END DO
END DO

END DO
…
!$acc end kernels
!$acc update host(DENSNON_T,TEMENON_T)
call CALC_RADLOSS(30)
call CALC_SOURCE(IPTURB)
…

Elapse time has been reduced from 21.18 sec to 9.37 sec for 1 GPU case (~1.81 times faster than CPU case)

Elapse time has been reduced from 9.37 sec to 4.34 sec for 4 GPU case (~3.91 times faster than CPU case)

Benchmark on ATOS BULLSEQUANA X2135 (NVIDIA A100)

Atos BullSequana X2135 "Da Vinci" single-node GPU bladeModel
116Racks
3456Nodes
single socket 32 cores Intel Ice Lake CPU
1 x Intel Xeon Platinum 8358, 2.60GHz TDP 250W

Processors

4 x NVIDIA Ampere GPUs/node, 64GB HBM2e NVLink 3.0 (200GB/s)Accelerators
32 cores/nodeCores
512 (8x64) GB DDR4 3200 MHzRAM
about 309 Pflop/sPeak

Performance
DragonFly+ 200 Gbps (NVIDIA Mellanox Infiniband HDR) 2 x dual port
HDR100 per node

Internal Network

137.6 PB based on DDN ES7990X and Hard Drive Disks (Capacity Tier)
5.7 PB based on DDN ES400NVX2 and Solid State Drives (Fast Tier)

Storage (raw
capacity)

LEONARDO Booster, CINECA

8MPIx4GPU
(1 node)

4MPIx4GPU
(1 node)

CPU 32MPI

0.881.540.37 (sec)matx
12.9623.865.62vect
5.086.5811.90rhs
0.611.884.24fft
0.761.310.95com
83.13164.9527.49pus
6.2310.594.90gthr
2.556.242.90com
146.96241.1193.17totoal

The sparse matrix inversion part (LAPACK) is expensive.

GPU Communications between Nodes

In TMRHS (rhs) subroutine, MPI communication is performed using NVLINK+RDMA.
For comparison to communication via host memory, 2 nodes are used for benchmark.

NVLINK+R
DMA

via Host Memory

4.498.70 (sec)rhs
0.310.31fft
2.274.07com

!$acc host_data use_device(VOLNONK_T,VOLNONK)
CALL MPI_ALLTOALLW(VOLNONK_T, IRCNT, IRDISP, IRTYPE, &

VOLNONK, ISCNT, ISDISP, ISTYPE, COMM1D, IERR)

GPU CPU

Chip
Set

Network
Card

Host
Memory

Device
Memory

GPU CPU

Network
Card

Host
Memory

Device
Memory

Chip
Set

Tunning by NVIDIA
Optimization I

Relatively small size of 2D FFT is executed many times which implies low level of GPU utilization rate
Diagnosis

Countermeasure
� �������	
�	��
�	���	��������	��	���	

Optimization II
Diagnosis
Pre-process and post-process of Alltoall communication are not parallelized
Countermeasure
Parallelization by OpenACC and execution on GPUs

Optimization III
Diagnosis

Countermeasure
Data copy between CPUs and GPUs before and after Alltoall communication

Direct Alltoall communication by NCCL

DGX H100, 4GPUs

Test Environment

4MPI x 4GPU

Execution conditions

Asis: cuFFT on GPU, Alltoall communication, pre-process and post-process on CPU

Batched FFT: optimization I and optimization II

NCCL: optimization I, optimization II and optimization III

NCCLBatched FFTAsis
3.4410.6924.05Time: rhs

Summary and Discussion
The optimization of R5F code for GPU version is performed using OpenACC.

 TMRHS (rhs) subroutine is tuned which is the most expensive part of the code.

 We have reduced communications between CPU and GPU in between cuFFT calls.

 In addition, we have extended 4 GPU use in 1 node.

As the result, elapse time of subroutine TMRHS is reduced more than half.

Supercomputer LEONARDO in CINECA is also used for benchmark of R5F.

 Sparse matrix inversion part (pus) by LAPACK is most expensive part, it should be ported in
GPU side.

 It is shown that NVLINK gives better performance for MPI communication compared with
IB.

In future work, we should implement
fftw_plan_many_dft => cufftPlanMany ZGBSV => cuSPARSE

	t1.pdf
	t1-6.pdf
	t1

