EPFL

Gyrokinetic GENE simulations for the JT-60SA reference scenario

Oleg Krutkin¹,

S. Brunner¹, S. Coda¹, A. lantchenko¹, M. J. Pueschel²

SPC-EPFL, Switzerland

DIFFER, Netherlands

21.05.2024

Swiss Plasma Center

EPFL Background

JT-60SA tokamak:

- <u>High β</u>
- Long pulse operation
- 41 MW of heating
- First plasma last year!

Modelling of JT-60SA turbulence (including core) is one of the current tasks

EPFL Reference scenarios

			#1	#2
B _t I _p	2.25 T 5.5 MA		Inductive	Inductive
R/a A	2.96/1.18 m 2.5	Configuration	DN	SN
κ/δ	1.93/0.5	I _p (MA)	5.5	5.5
V _p	133 m^{3}	$\dot{B}_{T}(T)$	2.25	2.25
t (flat-top)	100 s	q ₉₅	3.2	3
H&CD power	41 MW	P _{add} (MW)	41	41
N-NBI (500 keV)	10 MW	$P_{NNB}/P_{PNB}/P_{EC}$	10/24/7	10/24/7
P-NBI (85 keV)	24 MW	$\bar{n}_e (10^{19} \mathrm{m}^{-3}) /\mathrm{f_G}$	6.3/0.5	6.3/0.5
ECKH (82, 110, 138 GHZ)	/ MW	$\beta_{\rm N}$	3.1	3.1

[G Giruzzi et al 2020 Plasma Phys. Control. Fusion 62 014009]

EPFL GENE code

- Gyrokinetic delta-f simulations with multiple kinetic species
- Global or local (flux-tube modelling)
- Linear and nonlinear simulations
- Electric and magnetic field fluctuations
- Field aligned geometry radial (x), binormal (y) and parallel (z) grid

```
[Jenko F., et al. 2000 Phys. Plasmas 7]
```

 Will provide us with heat fluxes which can be compared to expected values (heating power)

EPFL S1 reference profiles

- GENE modelling carried out at ρ_{toroidal}=0.6
- Same electron and ion temperature
- 4 kinetic species (electrons, ions, carbon, fast ions)
- Fast ions temperature is about 10 times higher
- Results published in :

Swiss

Plasma

Center

[A. lantchenko et al 2024 Nucl. Fusion 64 026005]

EPFL S1 linear modelling

Linear GENE modelling:

- MTM -> ITG -> ETG
- ETG growth rate not significant
- Growth rate goes down with additional species
- High frequency mode in 4 sp. case

EPFL S1 two species modelling

Default heat flux too low

 Increasing gradients causes runaway of heat flux due to non-zonal transition (NZT)

Center

EPFL S1 four species modelling

EPFL Bpar fluctuations

 Inclusion of parallel magnetic field fluctuation is crucial

0.8

0.6

(a)

 $\delta B_{\parallel} = 0, \, \mathrm{d,e}$

 $\delta B_{\parallel} \neq 0, \, \mathrm{d,e,c}$

-8-

-0-

 $\delta B_{\parallel} \neq 0, \, \mathrm{d,e}$

 $\delta B_{\parallel} \neq 0, \, \mathrm{d,e,c,fd}$

-0-

- ---

0.1

EPFL **HF mode**

- Not a tearing mode
- Not peaking at the center of flux tube
- Frequency comparable to Alfven frequency (144 kHz vs 105 kHz)

The HF frequency mode connected to TAE beating? [Ajay C. 2024 arXiv:2404.18910]

EPFL Scenario 1 summary

- Nominal heat fluxes are too low to account for the heating power.
- Small increase of the profile gradients results in NZT, sensitive also to $\beta_{e}.$
- Modelling with fast ions is complicated by a high frequency mode (possibly TAE?)
- Correct inclusion of the electromagnetic effects is important

EPFL S2 reference profiles

- GENE modelling carried out at ρ_t =0.5
- Similar profiles to the previous case
- Simulations carried out at 10x and 20x background temperature for fast ions
- GENE simulations are still underway

Swiss

Plasma Center

EPFL **S2** linear modelling

Linear GENE modelling:

- MTM -> ITG -> ETG
- ETG growth rate not significant
- Growth rate goes down with additional species
- No high frequency mode

10⁰

 $k_v \rho_s$

10

10⁰

 10^{-2}

0.5

-1

 10^{-3}

10⁻²

 10^{-1}

γ a/c_s 10⁻¹

ω a/c_s -0.5 10^{2}

 10^{2}

EPFL S2 nonlinear modelling

ITG scale modelling

- Heat flux about 200% of expected
- NZT still present at higher gradients
- No strong HF mode
- 2 species case still in progress, but much larger heat flux

EPFL S2 nonlinear MTM modelling

Resolving MTMs:

- Challenging to resolve
- Heat flux still decreases with additional species
- No HF mode

Still a work in progress!

EPFL **B**_{par} fluctuations

- No strong linear effect of B_{par} linearly
- Still a strong nonlinear effect
- Consistent with S1 case

Swiss

Plasma

Center

0

0

20

40

60

tc /a

80

100

120

-200

EPFL S2 summary

- Nominal heat fluxes are too low to account for the heating power. Heat flux is overestimated in the simulations
- Small increase of the profile gradients results in NZT, sensitive also to β_e .
- Modelling with fast ions is complicated by a high frequency mode (possibly TAE?) HF mode has no significant impact
- Correct inclusion of the electromagnetic effects is important

EPFL Conclusions

- Gyrokinetic GENE simulations were carried out for the reference scenarios of JT-60SA
- Unique parameters of the tokamak make electromagnetic modes play an important role in the core region
- Electromagnetic effects need to be accounted for correctly (including δB_{par})
- Order of magnitude of expected heat fluxes was recovered for some cases, but strong sensitivity to profile gradients and the equilibrium was observed

EPFL Next steps

- Confirming the nature of the HF mode
- Converging S2 simulations
- Analysis of additional radial positions
- Simulations with three species to confirm the role of fast ions

Thank you for your attention!

EPFL Extra

$T_d/T_{ m e}$ $a/L_{T m e}$ $n_{ m d}/n_{ m e}$ $\epsilon = a/R$	1 2.09, <mark>2.3</mark> (2.51) 0.77 0.51	a/L_{nc} a/L_{nfd} a/L_{Td} n_c/n_e	0.72 1.72 2.09, <mark>2.3</mark> (2.93) 0.03
Z _{eff}	2 2 7 (2 4)	$n_{\rm fd}/n_{\rm e}$	0.03
$p_{\rm e}$ $n_{\rm e} \ [10^{19}]$	2.7% (2.4%) 5.87 (5.28)	d/L_{Tfd} T_{e} [keV]	4.25 6.27
Swige	$ \begin{array}{c} q_{0}\\ \hat{s}\\ T_{fd}/T_{e}\\ a/L_{ne}\\ a/L_{nd}\\ \nu_{ei}c_{s}/a \end{array} $	1.16 1.55 10.22 (8) 0.72, 0.8 (0.87) 0.68, 0.77 (0.87) 0.045 (0.04)	
Swiss Plasma Center	B_0 [T]	2.35	