
6th IFERCWorkshop on the usage of

GPU based systems for fusion

applications

24th June 2025

Approximating Many-ElectronWave

Functions using Artificial Neural

Networks

Gino Cassella Andres Perez Fadon Matthew Foulkes

Wan Tong Lou Halvard Sutterud David Pfau†

James Spencer† Sergei Dudarev∗

†Google DeepMind Ltd. ∗UKAEA



Radiation Damage

200 keV radiation damage cascade in tungsten

(cascadesdb.iaea.org)



Cascade Physics

ps time scales

nm length scales

electronic T∼ 104K

∼100 ps

hours or days

(www.tms.org/pubs/journals/JOM/0107/fig2.gif)



Positron Physics

(pubs.rsc.org/en/content/articlehtml/2019/tc/c8tc06330c)



PALS

Voids and vacancies are hard to image.

Positron annihilation lifetime spectroscopy is useful.

Interpreting results requires quantummechanical

simulations.

DFTmay not be adequate.

Aim

Develop a beyond-DFT approach for computing annihilation

rates and annihilating-pair momentum densities in fusion

materials.



Simulating Many-Electron Systems

The Many-Electron Schrödinger Equation−
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Ψ = EΨ

The fundamental laws necessary for the

mathematical treatment of a large part of

physics and the whole of chemistry are thus

completely known, and the difficulty lies only in

the fact that application of these laws leads to

equations that are too complex to be solved.

P.A.M. Dirac, Proc. Roy. Soc. A, 123, 714 (1929)



Density Functional Theory

Deal with the electrons one by one.

Effects of other electrons approximated by a mean field.

Ψ(r1, r2, . . . , rN) −→ Aφ1(r1)φ2(r2) . . . φN(rN)

There exists a mean field that yields exact ground-state

energies and densites.



DFTworks remarkably well, but:

is not accurate enough for room-temperature chemistry;

cannot tell you about the correlations between electrons.

We are going to tackle the full many-electron problem

(. . . and prove Dirac wrong?)



Neural Wave Functions

Artificial neural networks

are flexible and efficient function approximators in

high-dimensional spaces.

f(r1, . . . , rN) → Ψ



A Simple Neural Network

x
`+1 = A(W`

x
` + b

`)

Learn network

parameters using

automatic

differentiation and

back propagation.



A Simple Neural Wave Function

x
`+1 = A(W`

x
` + b

`)

Learn wavefunction

parameters using

automatic

differentiation and

back propagation.



Variational Principle

Given an approximate ground-state wavefunctionΨθ(r1, . . . , rN), we
can improve it by minimizing

E(θ) =

∫
. . .

∫
Ψ∗

θ ĤΨθ dr1 . . .drN

QM comes with a built-in loss function.We can use it to learn

wavefunctions without recourse to external data.



Neural Variational Monte Carlo

Estimate the energy expectation value and its gradients with

respect to the network parameters using Monte Carlo sampling.

Adapt the weights and biases of the neural network to lower the

energy.

No training dataset is required.We are “learning from equations.”



The Pauli Principle

Many-electron wavefunctions must be totally antisymmetric:

Ψθ(r1, . . . , ri, . . . , rj, . . . , rN)

= −Ψθ(r1, . . . , rj, . . . , ri, . . . , rN)

for all electron labels i and j.



Hartree-Fock Theory

Ψ ≈

∣∣∣∣∣∣∣∣∣∣
ϕ1(r1) ϕ1(r2) . . . ϕ1(rN)
ϕ2(r1) ϕ2(r2) . . . ϕ2(rN)

. . . . . .

. . . . . .
ϕN(r1) ϕN(r2) . . . ϕN(rN)

∣∣∣∣∣∣∣∣∣∣



FermiNet

Nothing requires the orbitals to be functions of the coordinates of a

single electron:

Ψ ≈

∣∣∣∣∣∣∣∣∣∣
ϕ1(r1, {r/1}) ϕ1(r2, {r/2}) . . . ϕ1(rN, {r/N})
ϕ2(r1, {r/1}) ϕ2(r2, {r/2}) . . . ϕ2(rN, {r/N})

. . . . . .

. . . . . .
ϕN(r1, {r/1}) ϕN(r2, {r/2}) . . . ϕN(rN, {r/N})

∣∣∣∣∣∣∣∣∣∣
Ψ remains antisymmetric as long as ϕi(rj; {r/j}) is invariant
under any change in the order of the arguments after rj.

(A drastic generalisation of a backflowwavefunction)



FermiNet and PsiFormer

FermiNet

D. Pfau, J.S. Spencer, A.G.D.G. Matthews, andW.M.C. Foulkes

Phys. Rev. Res. 2, 033429 (2020)

Psiformer

I. von Glehn, J.S. Spencer and D. Pfau

arXiv:2211.13672 (2022)

Recent Review

J. Hermann, J. Spencer, K. Choo, A. Mezzacapo,W.M.C. Foulkes,

D. Pfau, G. Carleo, and F. Noé

Nat. Rev. Chem. 7, 692 (2023)



Atoms

16 FermiNet

determinants.

(conventional VMC &DMC

used 50–100 CSFs.)

FermiNet consistently

captures 99.7% of

correlation energy.

VMC, DMC:

P. Seth, P. López Ríos and R.J. Needs

J. Chem. Phys. 134, 084105 (2011)

Exact:

S.J. Chakravorty et al.

Phys. Rev. B 47, 3649 (1993)



Molecules



Chemical Reactions

Bicyclobutane−→ Butadiene

bicbut

con_TS

dis_TS

g-but gt_TS t-but

Method con_TS dis_TS g-but gt_TS t-but

CCSD(T) 40.4 21.8 −25.1 −22.3 −28.0
CR-CC(2,3) 41.1 66.1 −24.9 −22.1 −27.9
CCSDt 40.1 59.0 −27.2 −25.3 −31.1
CC(t;3) 40.2 60.1 −25.3 −22.6 −28.3
DMC 40.4± 0.5 58.6± 0.5 −25.2± 0.5 −22.2± 0.5 −27.9± 0.5

FermiNet 40.2± 0.1 57.7± 0.1 −25.3± 0.1 −22.5± 0.1 −28.4± 0.1
Experiment 40.6± 2.5 - - - −25.9± 0.4

(Energies in kcal/mol relative to bicyclobutane)



Solids

Simulation cell with sides a1, a2, a3.

Any point in cell can be written

r = r1a2 + r2a2 + r3a3

Replace position inputs ri by explicitly periodic functions

sin(2πri) and cos(2πri).



LiH crystal

See also Li, Li and Chen, Nat. Commun. 13, 7895 (2022)



The Electron Gas

At very low densities, a uniform electron gas freezes into a

Wigner crystal

Wigner crystallisation has not yet been observed in 3D, but

was recently imaged in 2D.

(ETH Zurich, July 2021)



Simulations

Continuum QMCmethods cannot easily find quantum phase

transitions; you usually have to guess them first.

FermiNet found the 3DWigner crystal spontaneously.



Results

27 electrons in a body-centered cubic simulation cell.

Simulation cell is far too small to get the right transition

density. Formation of a 3× 3× 3Wigner crystal is strongly

favoured.

rs = 10 rs = 70

[Phys. Rev. Lett. 130, 036401 (2023)]

Comparing with conventional VMC and DMC simulations for

the same simulation cell is nevertheless valid.



Relative Energies



Order Parameter



Positrons

Nat. Commun. 15, 5214 (2024)



e+ binding energy (mHa)

Method LiH BeO

FermiNet 37.23 25.10
SJ-VMC 17.27 19
FN-DMC 37.1 28.0

CISD 17
MRD-CI 29.37 13.78

ECG-SVM 36.93
GW 39

e+ annihilation rate (ns−1)

Method PsH Mg LiH BeO Li2 Benzene

CI 2.0183 1.001 0.8947
FN-DMC 2.32 1.3602
ECG-SVG 2.4361 0.955 1.375

2.4722 1.0249
2.4685

GW 2.083 0.666
FermiNet 2.440 1.076 1.3391 0.9533 1.962 0.5247



[BeO, e+]





Positives

Neural wave functions are way better than other approximate

wave functions for molecules with more than a few atoms.

Solid-state simulation cells with∼100 electrons have been

simulated with equal success.

Rival and sometimes outperform the best quantum chemical

methods, many of which have been in development for 50+ years.

Good at dealing with unusual systems (positronic molecules and

solids; Wigner crystals) and strong correlations where

conventional methods fail or need painful modification.

Can sometimes discover new phases.



Questions and Negatives

Still very costly.

How general is the FermiNet wavefunction?

Does it work for non-Fermi liquids?

Size consistency and extensivity?

Optimization is slow and sometimes problematic.
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