IFERC-CSC Workshop on JFRS-1 Projects

SOLPS-ITER Simulation Study for Power Exhaust in JA-DEMO Divertor

H. Si^{1*}, G. Kawamura¹, N. Asakura², K. Hoshino³, H. Seto¹, Y. Sakamoto¹, M. Yagi¹, Y. Ishii¹

*si.hang@qst.go.jp

¹National Institutes for Quantum Science and Technology (QST), Rokkasho, Japan

²National Institutes for Quantum Science and Technology (QST), Naka, Japan

³Keio University, Yokohama, Japan

June 4th, 2025

Outline

- □ Introduction to JA-DEMO divertor and SOLPS-ITER
- □ Effects of different Ar seeding rates on SOL and divertor plasma
 - Density, temperature and impurities concentration at outer middle plane
 - Heat load, impurities on inner and outer divertor targets
- **□** Summary

Outline

- □ Introduction to JA-DEMO divertor and SOLPS-ITER
- □ Effects of different Australiang rates of SOL and divertor plasma
 - Density, temperature and impurit es concentrat pu at outer middle plane
 - Heat load, impurities on inner an outer diverto stargets
- Summary

R(m)

N. Asakura et al 2017 Nucl. Fusion 57 126050

Parameters	JA-DEMO	ITER(Q=10)
Major radius, R (m)	8.5	6.2
$P_{fus}(GW)$	1.5	0.5
P_{sep} (MW)	235 ~ 300	100
P_{sep}/R (MW/m)	28 ~ 36	16

N. Asakura et al 2017 Nucl. Fusion 57 126050

Parameters	JA-DEMO	ITER(Q=10)
Major radius, R (m)	8.5	6.2
$P_{fus}(GW)$	1.5	0.5
P_{sep} (MW)	235 ~ 300	100
P_{sep}/R (MW/m)	28 ~ 36	16

JA-DEMO: $Q_{DIV} > 50 \text{ MW/m}^2$

N. Asakura et al 2017 Nucl. Fusion 57 126050

Parameters	JA-DEMO	ITER(Q=10)
Major radius, R (m)	8.5	6.2
$P_{fus}(GW)$	1.5	0.5
P_{sep} (MW)	235 ~ 300	100
P_{sep}/R (MW/m)	28 ~ 36	16

JA-DEMO: $Q_{DIV} > 50 \text{ MW/m}^2$

Requirements for divertor plasma

Steady heat load, $q \le 10 \text{ MW/m}^2$ Negligible erosion rate, $T_e \le 10 \text{ eV}$

N. Asakura et al 2017 Nucl. Fusion 57 126050

Parameters	JA-DEMO	ITER(Q=10)
Major radius, R (m)	8.5	6.2
$P_{fus}(GW)$	1.5	0.5
P_{sep} (MW)	235 ~ 300	100
P_{sep}/R (MW/m)	28 ~ 36	16

JA-DEMO: $Q_{DIV} > 50 \text{ MW/m}^2$

Requirements for divertor plasma

Steady heat load, $q \le 10 \text{ MW/m}^2$ Negligible erosion rate, $T_e \le 10 \text{ eV}$

Power exhaust solutions for JA-DEMO divertor must meet the requirements beyond that of ITER. \Rightarrow A Huge Challenge!

Q_{DIV} control with radiation (Ne, Ar and Kr)

Q_{DIV} control with radiation (Ne, Ar and Kr)

Divertor/SOL plasma:

More radiation impurities needed to increase radiation loss. Z_{eff}

 Q_{DIV} control with radiation (Ne, Ar and Kr)

Divertor/SOL plasma:

More radiation impurities needed to increase radiation loss. Z_{eff}

Core plasma:

Less radiation impurities needed to avoid fuel dilution. Z_{eff}

Q_{DIV} control with radiation (Ne, Ar and Kr)

Divertor/SOL plasma:

More radiation impurities needed to increase radiation loss. Z_{eff}

Core plasma:

Less radiation impurities needed to avoid fuel dilution. Z_{eff}

Impurity control for JA-DEMO divertor

What is SOLPS

Scrape-Off Layer Plasma Simulation

What is SOLPS

Scrape-Off Layer Plasma Simulation

B2.5

2D fluid plasma solver (rectangular grid)

EIRENE

3D Monte-Carlo neutral code (grid-independent)

What is SOLPS

Scrape-Off Layer Plasma Simulation

A multiplicity of SOLPS versions

	EIRENE96/99	EIRENE_facelift	EIRENE_2010
B2			
B2.5 + drifts			
B2.5+improved drifts model			

A multiplicity of SOLPS versions

	EIRENE96/99	EIRENE_facelift	EIRENE_2010
B2	SOLPS4.0	SOLPS4.2	SOLPS4.3 (ITER divertor design)
B2.5 + drifts	SOLPS5.0 (most widely distributed version)	SOLPS5.1	
B2.5+improved drifts model	SOLPS5.2		SOLPS-ITER

Outline

- □ Introduction to JA-DEMO divertor and SOLPS-ITER
- □ Effects of different Ar seeding rates on SOL and divertor plasma
 - Density, temperature and impurities concentration at outer middle plane
 - Heat load, impurities on inner a
- **■** Summary

Basic input settings in SOLPS-ITER(Version 3.0.9) for JA-DEMO divertor

Basic input settings in SOLPS-ITER(Version 3.0.9) for JA-DEMO divertor

- $P_{\text{core/edge}} = 250 \text{ and } 300 \text{ MW}$
- Plasma species: D, He and Ar
- D_2 puffing rate = 7.0×10²² atoms/s
- Ar seeding rate = 1.0×10^{19} , 5.0×10^{19} and 1.0×10^{20} atoms/s
- Recycling coefficient at the pumping surface = 0.99
- $D = 0.3 \text{ m}^2/\text{s}, X_e = X_i = 1.0 \text{ m}^2/\text{s}$
- Without drift model

The peak heat flux density on the outer divertor target (Scan of Ar seeding rate and $P_{core/edge}$)

- As Ar seeding rate is increased gradually from 1.0e19 atom/s to 1.0e20 atom/s, the corresponding peak heat load on the outer divertor target are reduced gradually.
- ✓ Under the condition of higher power entering $SOL(P_{core/edge} = 300MW)$, the heat load on the outer divertor target will be also controlled well under 10 MW/m².

The peak heat flux density on the outer divertor target (Scan of Ar seeding rate and $P_{core/edge}$)

- As Ar seeding rate is increased gradually from 1.0e19 atom/s to 1.0e20 atom/s, the corresponding peak heat load on the outer divertor target are reduced gradually.
- ✓ Under the condition of higher power entering $SOL(P_{core/edge} = 300MW)$, the heat load on the outer divertor target will be also controlled well under 10 MW/m².

Upstream profiles of electron density, electron temperature, He/Ar ions concentration, He/Ar ion density at the outer mid-plane for cases with different Ar seeding rates($P_{core/edge} = 300 \text{MW}$)

- ✓ As Ar seeding rate is increased, the separatrix electron density at outer middle plane is reduced.
- ✓ Owing to more and more Ar seeded from outer divertor region, Ar ion density at outer middle plane is also increased.

Outline

- □ Introduction to JA-DEMO divertor and SOLPS-ITER
- □ Effects of different Ar seeding rates on SOL and divertor plasma
 - Density, temperature and impurit es concentrat on at outer mildle plane
 - Heat load, impurities on inner and outer divertor targets
- **■** Summary

Electron temperature and heat flux density on the inner and outer divertor targets for cases with different Ar seeding rates($P_{core/edge} = 300 \text{MW}$)

As Ar seeding rate is increased from 1.0e19 atom/s to 1.0e20 atom/s with increasing divertor radiation, the peak heat load at inner and outer divertor target are reduced separately.

Electron density and parallel particle flux density on the inner and outer divertor targets for cases with different Ar seeding rates($P_{core/edge} = 300 \text{MW}$)

As Ar seeding rate is increased from 1.0e19 atom/s to 1.0e20 atom/s, the electron density and particle flux density at the divertor targets reduced, which shows that divertor enters detachment.

Ar ion density and He ions density on the inner and outer divertor targets for cases with different Ar seeding rates($P_{core/edge} = 300$ MW)

✓ As Ar seeding rate is increased from 1.0e19 atom/s to 1.0e20 atom/s, Ar density are increased at the inner and outer divertor target.

Momentum loss for cases with different Ar seeding rates $(P_{core/edge} = 300 \text{MW})$

As Ar seeding rate is increased from 1.0e19 atom/s to 1.0e20 atom/s, the momentum loss is extended to outer flux surface.

2D distributions of electron density and Ar density for cases with different Ar seeding rates($P_{core/edge} = 300 \text{MW}$)

2D distributions of electron density and Ar density for cases with different Ar seeding rates($P_{core/edge} = 300 \text{MW}$)

2D distributions of total radiation for cases with different Ar seeding rates($P_{core/edge} = 300 \text{MW}$)

2D distributions of total radiation for cases with different Ar seeding rates($P_{core/edge} = 300 \text{MW}$)

	P _{core/edge} (MW)	P _{sep} (MW)	Total radiation (MW)	Total radiation for IT (MW)	Total radiation for OT (MW)	Total radiation for SOL (MW)	f _{rad} div
Ar=1.0e19/s	300	284.3	170.5(Ar=147.1)	72.9	70.9	16.6	56.4%
Ar=5.0e19/s	300	273.2	194.1(Ar=175.2)	84.2	78.1	18.4	66.1%
Ar=1.0e20/s	300	266.3	206.5(Ar=190.3)	78.9	88.9	20.9	70.9%

As Ar seeding rate is increased from 1.0e19 atom/s to 1.0e20 atom/s, the radiation power is increased significantly.

2D distributions of parallel velocity(D) for cases with different Ar seeding rates($P_{core/edge} = 300$ MW) (Flow reversal)

2D distributions of parallel velocity(D) for cases with different Ar seeding rates($P_{core/edge} = 300 \text{MW}$) (Flow reversal)

- ✓ In the outer divertor region there is the flow reversal, which is consistent with SONIC results.
- ✓ As Ar seeding rate is increased from 1.0e19 atom/s to 1.0e20 atom/s, the region for the flow reversal in SOL is reduced.

Outline

Introduction to JA-DEMO divertor and SOLPS-ITER Effects of different Air seeding rates of OL and divertor plasma - Density, temperature and impurit es concentrat on at outer maldle plane - Heat load, impurities Summary R (m)

✓ For JA-DEMO, seeding Ar impurity will increase the corresponding radiation power loss efficiently, so it is so significant for controlling heat load on the divertor targets.

- ✓ For JA-DEMO, seeding Ar impurity will increase the corresponding radiation power loss efficiently, so it is so significant for controlling heat load on the divertor targets.
- ✓ Under different scenarios($P_{core/edge} = 250$ and 300 MW), as Ar is increased from 1.0×10^{19} to 1.0×10^{20} atoms/s with the corresponding Ar concentration from 0.54% to 3.5%, the heat flux density and electron temperature at the divertor targets can be controlled well(< $10MW/m^2$) with low $n_{e,sep} = 2.0 \sim 3.5 \times 10^{19}$ m⁻³. The present modeling results by SOLPS-ITER are also consistent with those by SONIC.

- ✓ For JA-DEMO, seeding Ar impurity will increase the corresponding radiation power loss efficiently, so it is so significant for controlling heat load on the divertor targets.
- ✓ Under different scenarios($P_{core/edge} = 250$ and 300 MW), as Ar is increased from 1.0×10^{19} to 1.0×10^{20} atoms/s with the corresponding Ar concentration from 0.54% to 3.5%, the heat flux density and electron temperature at the divertor targets can be controlled well(< $10MW/m^2$) with low $n_{e,sep} = 2.0 \sim 3.5 \times 10^{19}$ m⁻³. The present modeling results by SOLPS-ITER are also consistent with those by SONIC.
- ✓ In future more cases will be investigated with lower Ar seeding and/or higher D puffing cases. Study for lower P_{sep} scenario will be also investigated.

- ✓ For JA-DEMO, seeding Ar impurity will increase the corresponding radiation power loss efficiently, so it is so significant for controlling heat load on the divertor targets.
- ✓ Under different scenarios($P_{core/edge} = 250$ and 300 MW), as Ar is increased from 1.0×10^{19} to 1.0×10^{20} atoms/s with the corresponding Ar concentration from 0.54% to 3.5%, the heat flux density and electron temperature at the divertor targets can be controlled well(< $10MW/m^2$) with low $n_{e,sep} = 2.0 \sim 3.5 \times 10^{19}$ m⁻³. The present modeling results by SOLPS-ITER are also consistent with those by SONIC.
- ✓ In future more cases will be investigated with lower Ar seeding and/or higher D puffing cases. Study for lower P_{sep} scenario will be also investigated.

Thank you for your attention!

