Report of GGHB Project ### **Contents** - 1. Fuel supply and helium ash exhaust in flux-driven turbulence - 2. Verification of global electromagnetic gyrokinetic code - 3. Summary & Future plans ### Kenji IMADERA Graduate School of Energy Science, Kyoto University ### Collaborators A. Ishizawa, S. Okuda (Kyoto U.) E. Poli, T. Görler, T. Hayward-Schneider (IPP) ## **Background - 1** - ✓ Establishment of a refueling method is an important issue to control nuclear fusion reactors. - ✓ But, in DEMO-class high-temperature plasmas, a pellet injection reaches only up to 80-90% of the minor radius so that the central density peaking depends on particle pinch, making the prediction difficult. Schematic picture of Japan-DEMO* - ✓ While turbulent particle transport has been studied based on local gyrokinetic models [Angioni+, PoP-2004], it is important to study the global physics. - ✓ The above analysis is also meaningful to investigate impurity transport such as Helium ash exhaust. # **Background - 2** # Radial profiles of tungsten fluxes in GYSELA full-f simulation # Radial profiles of helium fluxes in GT5D full-f simulation - ✓ Neoclassical and turbulent impurity transports are not additive, but have the synergy effects. - ✓ Neoclassical flux is much larger than the theoretical estimate because of the synergy effect. But, No full-f gyrokinetic simulation from the view point of fuel supply and helium ash exhaust! # **Purpose of This Work** (1) Particle transport simulation for bulk ion [Imadera+, NF-2024] - ✓ By means of full-f gyrokinetic code GKNET with hybrid electron model [Imadera & Kishimoto, PPCF-2023], we investigate the effect of ion and electron heating on bulk particle transport. - ✓ Especially, we separately discuss the contribution from (1) the $E \times B$ drift with $n \neq 0$, (2) the $E \times B$ drift with n=0, and (3) the magnetic drift. $$\frac{dE_r}{dt} = \Gamma_{i,E \times B(n \neq 0)} + \Gamma_{i,E \times B(n = 0)} + \Gamma_{i,B} - \Gamma_{e,E \times B(n \neq 0)} - \Gamma_{e,E \times B(n = 0)} - \Gamma_{e,B}$$ *evaluated by gyro-center coordinate (2) Particle transport simulation for bulk ion and helium ash [Imadera+, submitted to IAEA-20251 ✓ By considering helium, we also investigate the balance of fuel supply and helium. ash exhaust under ion/electron heating. # (1) Governing Equations and Parameters ### **Governing equations** GK Boltzmann(Vlasov) equation $$\frac{\partial}{\partial t} (\mathcal{J}f_{S}) + \mathcal{J} \frac{d\mathbf{R}}{dt} \cdot \frac{\partial f_{S}}{\partial \mathbf{R}} + \mathcal{J} \frac{dv_{\parallel}}{dt} \frac{\partial f_{S}}{\partial v_{\parallel}} = \mathcal{J}C_{S,S} (s = i, e)$$ $$\frac{d\mathbf{R}}{dt} = \frac{1}{B_{\parallel,S}^{*}} \left[v_{\parallel} (\mathbf{\nabla} \times \mathbf{A}) + \frac{B_{0}}{\Omega_{S}} v_{\parallel}^{2} (\mathbf{\nabla} \times \mathbf{b}) + \frac{c}{e_{S}} H \mathbf{\nabla} \times \mathbf{b} - \frac{c}{e_{S}} \mathbf{\nabla} \times (H\mathbf{b}) \right]$$ $$\frac{dv_{\parallel}}{dt} = -\frac{1}{m_{S} B_{\parallel,S}^{*}} \left[(\mathbf{\nabla} \times \mathbf{A}) \cdot \mathbf{\nabla} H + \frac{B_{0}}{\Omega_{S}} v_{\parallel} \mathbf{\nabla} \cdot (H\mathbf{\nabla} \times \mathbf{b}) \right]$$ | (| ← GK quasi-neutrality condition → | | | | |---|---|-------------|-------------------|--| | | $\boxed{\frac{1}{4\pi e_i} \nabla_{\!\!\perp} \cdot \frac{\rho_{ti}^2}{\lambda_{Di}^2} \nabla_{\!\!\perp} \phi + \iint \langle \delta f_i \rangle_{\alpha,i} \frac{B_\parallel^*}{m_i} d\nu_\parallel d\mu = \delta n_e}$ | | | | | + | | (m,n)=(0,0) | $(m,n)\neq (0,0)$ | | | | $\delta n_{e,pass}$ | Kinetic | Adiabatic | | | | $\delta n_{e,trap}$ | Kinetic | Kinetic | | #### **Parameters** | Parameter | Value | |-----------------------|-------| | a_0/ρ_i | 100 | | a_0/R_0 | 0.36 | | $(R_0/L_n)_{r=a_0/2}$ | 2.22 | | $\sqrt{m_i/m_e}$ | 10 | | $ u_i^* $ | 0.025 | | $ u_e^*$ | 0.025 | - ✓ Hydrogen and hybrid electron are assumed - ✓ Hereafter, we report the following two cases; | Case | R_0/L_{T_i} | R_0/L_{T_e} | lon
heating | Electron
heating | |------------------|---------------|---------------|----------------|---------------------| | (A) Ion/Electron | 10 | 10 | On | On | | (B) Ion | 10 | 6 | On | Off | # (1) Density Peaking/Flattening by Heating # (1) Summary of Turbulent Ion Particle Pinch Step-1: Particle transport by E × B drift (n≠0) determined by temperature gradients $$\frac{\Gamma_{i,E(n\neq 0)}}{\text{Negative}} + \frac{\Gamma_{i,E(n=0)}}{\Gamma_{i,E(n=0)}} + \frac{\Gamma_{i,B}}{\Gamma_{i,B}} - \frac{\Gamma_{e,E(n\neq 0)}}{\text{Strongly}} = 0$$ Positive $$\frac{\Gamma_{i,E(n\neq 0)} + \Gamma_{i,E(n=0)} + \Gamma_{i,B}}{\text{Weakly}} - \frac{\Gamma_{e,E(n\neq 0)}}{\text{Negative}} = 0$$ Negative Step-2: Particle transport by $E \times B$ (n=0) and magnetic drift to satisfy the above balance $$\frac{\Gamma_{i,E(n\neq 0)}}{\text{Negative}} + \frac{\Gamma_{i,E(n=0)}}{\text{Negative}} + \frac{\Gamma_{i,B}}{\text{Veakly}} - \frac{\Gamma_{e,E(n\neq 0)}}{\text{Strongly}} = 0$$ Negative Positive $$\frac{\Gamma_{i,E(n\neq 0)}}{\text{Weakly}} + \frac{\Gamma_{i,E(n=0)}}{\text{Positive}} + \frac{\Gamma_{i,B}}{\text{Positive}} - \frac{\Gamma_{e,E(n\neq 0)}}{\text{Negative}} = 0$$ Negative $$6/20$$ # (2) Governing Equations and Parameters #### **Governing equations** GK Boltzmann(Vlasov) equation - $$\frac{\partial}{\partial t}(\mathcal{J}f_{S}) + \mathcal{J}\frac{d\mathbf{R}}{dt} \cdot \frac{\partial f_{S}}{\partial \mathbf{R}} + \mathcal{J}\frac{dv_{\parallel}}{dt}\frac{\partial f_{S}}{\partial v_{\parallel}} = \mathcal{J}C_{S,S} (s = i, e, \mathbf{He})$$ $$\frac{d\mathbf{R}}{dt} = \frac{1}{B_{\parallel,S}^{*}} \left[v_{\parallel}(\mathbf{\nabla} \times \mathbf{A}) + \frac{B_{0}}{\Omega_{S}} v_{\parallel}^{2}(\mathbf{\nabla} \times \mathbf{b}) + \frac{c}{e_{S}} H \mathbf{\nabla} \times \mathbf{b} - \frac{c}{e_{S}} \mathbf{\nabla} \times (H\mathbf{b}) \right] + \frac{1}{4\pi e_{He}} \nabla_{\perp} \cdot \frac{\rho_{the}^{2}}{\lambda_{Di}^{2}} \nabla_{\perp} \phi + \iint \langle \delta f_{i} \rangle_{\alpha,i} \frac{B_{\parallel}^{*}}{m_{i}} dv_{\parallel} d\mu$$ $$+ \frac{1}{4\pi e_{He}} \nabla_{\perp} \cdot \frac{\rho_{the}^{2}}{\lambda_{Dhe}^{2}} \nabla_{\perp} \phi$$ $$+ \iint \langle \delta f_{He} \rangle_{\alpha,He} \frac{B_{\parallel}^{*}}{m_{He}} dv_{\parallel} d\mu = \delta n$$ GK quasi-neutrality condition $$\frac{1}{4\pi e_{i}}\nabla_{\perp}\cdot\frac{\rho_{ti}^{2}}{\lambda_{Di}^{2}}\nabla_{\perp}\phi+\iint\langle\delta f_{i}\rangle_{\alpha,i}\frac{B_{\parallel}^{*}}{m_{i}}dv_{\parallel}d\mu$$ $$+\frac{1}{4\pi e_{He}}\nabla_{\perp}\cdot\frac{\rho_{tHe}^{2}}{\lambda_{DHe}^{2}}\nabla_{\perp}\phi$$ $$+\iint\langle\delta f_{He}\rangle_{\alpha,He}\frac{B_{\parallel}^{*}}{m_{He}}dv_{\parallel}d\mu=\delta n_{e}$$ #### **Parameters** | Parameter | Value | |-----------------------|-------| | a_0/ρ_i | 100 | | a_0/R_0 | 0.36 | | $(R_0/L_n)_{r=a_0/2}$ | 2.22 | | $\sqrt{m_i/m_e}$ | 10 | | $ u_i^*$ | 0.025 | | $ u_e^*$ | 0.025 | - 10% He is assumed - Hereafter, we report the following two cases; | Case | R_0/L_{T_i} | R_0/L_{T_e} | lon
heating | Electron
heating | |------------------|---------------|---------------|----------------|---------------------| | (A) Ion/Electron | 10 | 10 | On | On | | (B) Ion | 10 | 6 | On | Off | # (2) Density Peaking/Flattening by Heating - ✓ Clear ion density peaking can be observed in the ion/electron heating case. But, Helium density is also slightly peaked. - On the other hand, ion and helium density flattening weakly happens in the ion heating case. # (2) Ion & Helium Particle Flux ### Particle fluxes in the ion/electron (left) and ion (right) heating cases $\Gamma_{i,n\neq 0}$ $\Gamma_{i,n=0}$ 1e−4 lon 2 - ✓ Both ion particle pinches by non-axisymmetric and axisymmetric drifts are driven in the ion/electron heating case. - On the other hand, He particle transport by non-axisymmetric and axisymmetric drifts cancel with each other. # (2) Effect of Non-Thermalized Helium - ✓ When Helium temperature is higher than bulk ion one, it is newly found that ion particle pinch becomes weak and helium particle pinch is enhanced. - ✓ It is reported that fast ions [P. Manas, NF-2020], ITG-TEM interactions [P. Palade, NF-2023], external torque [E. Fable, PPCF-2023] can change Helium particle transport, which will be checked as future works. 10/20 ### **Contents** - 1. Fuel supply and helium ash exhaust in flux-driven turbulence - 2. Verification of global electromagnetic gyrokinetic code - 2.1 Introduction - 2.2 GKNET-FAC - 2.3 Benchmark with GENE - 2.4 Benchmark with ORB5 - 3. Summary & Future plans ### Introduction Our new electromagnetic GKNET code with field aligned coordinate has achieved: - ✓ Significant reduction in computational cost through the use of a field-aligned coordinate system - ✓ Simulations with realistic tokamak equilibria via an interface coupled to an MHD equilibrium code To validate the new code, linear benchmark comparisons were made with: - ✓ **GENE** [Görler+, JCP-2011]: uses the same Eulerian method as GKNET - ✓ ORB5 [Lanti+, CPC-2020]: uses a different approach based on the Particle-In-Cell method ### **Field-aligned Coordinates** Field-aligned coordinates using the shifted metric technique $$\begin{aligned} x &= \rho & [0,1] \\ y &= y_{\text{shift},j} - \zeta & [0,2\pi/N_w] \\ z &= \theta - \theta_j & [-\pi/N_s,\pi/N_s] \end{aligned}$$ $$y_{\text{shift},j} = \int_{\theta_j}^{\theta} \frac{\mathbf{B} \cdot \nabla \zeta}{\mathbf{B} \cdot \nabla \theta'} d\theta' \quad (j = 0, 1, \dots N_S - 1)$$ [Beer+, PoP-1995], [Scott, PoP-2001] ρ : Arbitrary radial label heta : Arbitrary poloidal angle label ζ : Geometrical toroidal angle N_s : Number of domain partitions N_w : Toroidal wedge number ✓ In the electrostatic GKNET, this coordinate system requires lower computational cost by a factor of approximately 1/94. [Okuda+, PFR-2023] Covariant basis vectors and a magnetic field line (blue) ### **Governing Equations** ### **GK** electromagnetic Vlasov equation $$\frac{\partial \delta f_{S}}{\partial t} + \boldsymbol{V}_{R}^{(0)} \cdot \nabla \delta f_{S} + \boldsymbol{V}_{R}^{(1)} \cdot \nabla (f_{0S} + \delta f_{S}) + a_{\parallel}^{(0)} \frac{\partial \delta f_{S}}{\partial v_{\parallel}} + a_{\parallel}^{(1)} \frac{\partial}{\partial v_{\parallel}} (f_{0S} + \delta f_{S}) = 0$$ $$\boldsymbol{V}_{R} = \frac{1}{B_{\parallel S}^{*}} \left[\boldsymbol{B}_{0} v_{\parallel} + \frac{m_{S}}{q_{S}} v_{\parallel}^{2} \nabla \times \boldsymbol{b}_{0} + \frac{c}{q_{S}} \boldsymbol{b}_{0} \times \nabla (\mu B_{0} + q_{S} \langle \boldsymbol{\phi} \rangle - q_{S} v_{\parallel} \langle A_{\parallel} \rangle) \right]$$ $$a_{\parallel} = -\frac{q_{S}}{m_{S} c} \frac{\partial \langle A_{\parallel} \rangle}{\partial t} - \frac{1}{m_{S} B_{\parallel S}^{*}} \left(\boldsymbol{B}_{0} + \frac{m_{S}}{q_{S}} v_{\parallel} \nabla \times \boldsymbol{b}_{0} - c \boldsymbol{b}_{0} \times \nabla \langle A_{\parallel} \rangle \right) \cdot \nabla (\mu B_{0} + q_{S} \langle \boldsymbol{\phi} \rangle)$$ ### **GK** quasi-neutrality condition $$\nabla_{\perp} \cdot \left(\frac{m_i n_{0i}}{B^2} \nabla_{\perp} \phi \right) = \sum_{s} \int q_s \delta f_s d^3 \boldsymbol{v}$$ ### **GK** Ampère's law $$-\nabla_{\perp}^{2} A_{\parallel} = \frac{4\pi}{c} \sum_{s} \int q_{s} v_{\parallel} \delta f_{s} d^{3} \boldsymbol{v}$$ GK induction equation (time derivative of Ampère's law) $$-\nabla_{\perp}^{2} \frac{\partial A_{\parallel}}{\partial t} = \frac{4\pi}{c} \sum_{s} \int q_{s} v_{\parallel} \frac{\partial \delta f_{s}}{\partial t} d^{3} \boldsymbol{v}$$ # **Comparison with GENE code** - ✓ The linear benchmark with GENE is conducted using the parameters and simulation results presented in [Görler+, PoP-2016]. - ✓ The beta dependence of the eigenvalue at a fixed wavenumber is compared. #### **Parameters** | Parameter | Value | | |--|-------|--| | a_0/ρ_i | 180 | | | a_0/R_0 | 0.36 | | | $(R_0/L_T)_{r=a_0/2}$ | 6.96 | | | $(R_0/L_n)_{r=a_0/2}$ | 2.23 | | | m_i/m_e | 1836 | | | $q = 2.52 \left(\frac{r}{a_0}\right)^2 - 0.16 \left(\frac{r}{a_0}\right) + 0.86$ | | | - ✓ Concentric circular torus - ✓ Only n = 19 mode is calculated using 1/19 wedge torus - ✓ Realistic proton-electron mass ratio - ✓ β_i values: 0–2.5% range tested $$\checkmark$$ $\beta_i \equiv 8\pi n_{i0} T_{i0} / B_{\text{axis}}^2$ at $r = 0.5a_0$ # **Comparison with ORB5 code** - ✓ The linear benchmark with ORB5 is conducted using the parameters presented in [Mishchenko+, PPCF-2022]. - ✓ The beta dependence of the eigenvalue is compared across multiple wavenumbers. #### **Parameters** | Parameter | Value | | | |---|---------|--|--| | a_0/ρ_i | 180 | | | | a_0/R_0 | 0.1 | | | | $(R_0/L_T)_{r=a_0/2}$ | 20 | | | | $(R_0/L_n)_{r=a_0/2}$ | 3 | | | | m_i/m_e | 200 | | | | $oldsymbol{eta}_0$ | 0.0952% | | | | $q = \frac{0.8(r/a_0)^2 + 1.1}{\sqrt{1 - (r/R_0)^2}}$ | | | | ✓ Concentric circular torus $$\checkmark \beta_i \equiv 8\pi n_{i0} T_{i0} / B_{\text{axis}}^2$$ at $r = 0.5a_0$ $\checkmark \beta_i$ values: β_0 , $2\beta_0$, $3\beta_0$, $4\beta_0$, $5\beta_0$ ### **Contents** - 1. Fuel supply and helium ash exhaust in flux-driven turbulence - 2. Verification of global electromagnetic gyrokinetic code - 3. Summary & Future plans - 3.1 Summary & Future plans for topic-1 - 3.2 Summary & Future plans for topic-2 # **Summary & Future Plans for Topic-1** ### **Summary** ✓ A density peaking of bulk ion due to turbulent fluctuations can be achieved by sufficiently strong both ion and electron heating even in the presence of impurities. \checkmark Hot helium, i.e. higher T_{z0}/T_{i0} can prevent both fuel supply and helium ash exhaust, indicating the temperature ratio of helium to bulk ion is one of key parameters to control them. ### **Future Plans** - ✓ Isotope effect - ✓ Effect of temperature anisotropy - ✓ Heating model # **Summary & Future Plans for Topic-2** ### **Summary** - ✓ Electromagnetic GKNET has been extended with field-aligned coordinates and an interface to MHD equilibrium codes. - ✓ Linear benchmarks have shown good agreement between GKNET, GENE, and ORB5. ### **Future Plans** - ✓ Nonlinear simulation (already successful, further analysis needed) - ✓ Beta dependence of shaping effects - ✓ Micro tearing mode - ✓ Energetic particle ### **Acknowledgment** We gratefully acknowledge Drs. Poli, Görler and Hayward-Schneider, Max-Planck-Institut für Plasmaphysik, for this work.